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domain of sets which satisfies these assumptions. This discovery was regarded
as a paradox just because it had earlier seemed to most mathematicians that
the intuitive universe of sets did satisfy the axioms.

Russell’s Paradox is just the tip of an iceberg of problematic results in
naive set theory. These paradoxes resulted in a wide-ranging attempt to clarify
the notion of a set, so that a consistent conception could be found to use in
mathematics. There is no one single conception which has completely won out
in this effort, but all do seem to agree on one thing. The problem with the
naive theory is that it is too uncritical in its acceptance of “large” collections
like the collection V' used in the last proof. What the result shows is that
there is no such set. So our axioms must be wrong. We must not be able to
use just any old property in forming a set.

The father of set theory was the German mathematician Georg Cantor. His
work in set theory, in the late nineteenth century, preceded Russell’s discovery
of Russell’s paradox in the earlier twentieth century. It is thus natural to
imagine that he was working with the naive, hence inconsistent view of sets.
However, there is clear evidence in Cantor’s writings that he was aware that
unrestricted set formation was inconsistent. He discussed consistent versus
inconsistent “multiplicities,” and only claimed that consistent multiplicities
could be treated as objects in their own right, that is, as sets. Cantor was not
working within an axiomatic framework and was not at all explicit about just
what properties or concepts give rise to inconsistent multiplicities. People
following his lead were less aware of the pitfalls in set formation prior to
Russell’s discovery.

Remember
Russell found a paradox in naive set theory by considering
Z=Ax|z¢&ux}

and showing that the assumption Z € Z and its negation each entails the
other.

reactions to the paradox

SECTION 15.9

Zermelo Frankel set theory zrc

The paradoxes of naive set theory show us that our intuitive notion of set is
simply inconsistent. We must go back and rethink the assumptions on which
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the theory rests. However, in doing this rethinking, we do not want to throw
out the baby with the bath water.

Which of our two assumptions got us into trouble, Extensionality or Com-
prehension? If we examine the Russell Paradox closely, we see that it is ac-
tually a straightforward refutation of the Axiom of Comprehension. It shows
that there is no set determined by the property of not belonging to itself. That
is, the following is, on the one hand, a logical truth, but also the negation of
an instance of Comprehension:

—JVr(r ec—x € x)

The Axiom of Extensionality is not needed in the derivation of this fact. So it is
the Comprehension Axiom which is the problem. In fact, back in Chapter 13,
Exercise 13.52, we asked you to give a formal proof of

—Jy Vx [E(X7 y) < =E(x, X)]

This is just the above sentence with “E(x,y)” used instead of “z € y”. The
proof shows that the sentence is actually a first-order validity; its validity does
not depend on anything about the meaning of “€.” It follows that no coherent
conception of set can countenance the Russell set.

But why is there no such set? It is not enough to say that the set leads
us to a contradiction. We would like to understand why this is so. Various
answers have been proposed to this question.

One popular view, going back to the famous mathematician John von
Neumann, is based on a metaphor of size. The intuition is that some predicates
have extensions that are “too large” to be successfully encompassed as a whole
and treated as a single mathematical object. Any attempt to consider it as a
completed totality is inadequate, as it always has more in it than can be in
any set.

On von Neumann’s view, the collection of all sets, for example, is not itself
a set, because it is “too big.” Similarly, on this view, the Russell collection of
those sets that are not members of themselves is also not a set at all. It is too
big to be a set. How do we know? Well, on the assumption that it is a set, we
get a contradiction. In other words, what was a paradox in the naive theory
turns into an indirect proof that Russell’s collection is not a set. In Cantor’s
terminology, the inconsistent multiplicities are those that are somehow too
large to form a whole.

How can we take this intuition and incorporate it into our theory? That
is, how can we modify the Comprehension Axiom so as to allow the instances
we want, but also to rule out these “large” collections?
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The answer is a bit complicated. First, we modify the axiom so that we
can only form subsets of previously given sets. Intuitively, if we are given a
set a and a wif P(z) then we may form the subset of a given by:

{z |z €anP(x)}

The idea here is that if ¢ is not “too large” then neither is any subset of it.
Formally, we express this by the axiom

Ya3bVzlz € b« (z € a A P(z))]

In this form, the axiom scheme is called the Axiom of Separation. Actually,
as before, we need the universal closure of this wff, so that any other free
variables in P(x) are universally quantified.

This clearly blocks us from thinking we can form the set of all sets. We
cannot use the Axiom of Separation to prove it exists. (In fact, we will later
show that we can prove it does not exist.) And indeed, it is easy to show that
the resulting theory is consistent. (See Exercise 15.68.) However, this axiom
is far too restrictive. It blocks some of the legitimate uses we made of the
Axiom of Comprehension. For example, it blocks the proof that the union of
two sets always exists. Similarly, it blocks the proof that the powerset of any
set exists. If you try to prove either of these you will see that the Axiom of
Separation does not give you what you need.

We can’t go into the development of modern set theory very far. Instead,
we will state the basic axioms and give a few remarks and exercises. The
interested student should look at any standard book on modern set theory.
We mention those by Enderton, Levy, and Vaught as good examples.

The most common form of modern set theory is known as Zermelo-Frankel
set theory, also known as ZFC. ZFC set theory can be thought of what you get
from naive set theory by weakening the Axiom of Comprehension to the Axiom
of Separation, but then throwing back all the instances of Comprehension that
seem intuitively true on von Neumann’s conception of sets. That is, we must
throw back in those obvious instances that got inadvertently thrown out.

In zFC, it is assumed that we are dealing with “pure” sets, that is, there is
nothing but sets in the domain of discourse. Everything else must be modeled
within set theory. For example, in ZFC, we model 0 by the empty set, 1 by {0},
and so on. Here is a list of the axioms of zZFC. In stating their FOL versions,
we use the abbreviations 3z € y P and Vo € y P for Jz(x € y A P) and
Ve(r € y — P).

1. Axiom of Extensionality: As above.

2. Axiom of Separation: As above.

Axiom of Separation

Zermelo-Frankel set
theory ZFC

axioms of ZFC
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3. Unordered Pair Axiom: For any two objects there is a set that has both
as elements.

4. Union Axiom: Given any set a of sets, the union of all the members of
a is also a set. That is:

Va3bVz[z € b — Jc € a(z € ¢)]

5. Powerset Axiom: Every set has a powerset.
6. Axiom of Infinity: There is a set of all natural numbers.

7. Axiom of Replacement: Given any set a and any operation F' that defines
a unique object for each x in a, there is a set

{F() |z € a}
That is, if Vo € a3lyP(x,y), then there is a set b = {y | 3= € aP(z,y)}.

8. Axiom of Choice: If f is a function with non-empty domain a and for
each z € a, f(z) is a non-empty set then there is a function g also with
domain a such that for each =z € a, g(z) € f(x). (The function g is
called a choice function for f since it chooses an element of f(x) for
each z € a.)

9. Axiom of Regularity: No set has a nonempty intersection with each of
its own elements. That is:

Vblb # 0 — Jy € by Nb = 0)]

Of these axioms, only the Axioms of Regularity and Choice are not direct,
straightforward logical consequences of the naive theory. (Technically speak-
ing, they are both consequences, though, since the naive theory is inconsistent.
After all, everything is a consequence of inconsistent premises.)

The Axiom of Choice (AC) has a long and somewhat convoluted history.
There are many, many equivalent ways of stating it; in fact there is a whole
book of statements equivalent to the axiom of choice. In the early days of set
theory some authors took it for granted, others saw no reason to suppose it
to be true. Nowadays it is taken for granted as being obviously true by most
mathematicians. The attitude is that while there may be no way to define
a choice function g from f, and so no way to prove one exists by means of
Separation, but such functions exists none-the-less, and so are asserted to
exist by this axiom. It is extremely widely used in modern mathematics. The
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Axiom of Regularity is so calledbecause it is intended to rule out “irregular”
sets like a = {{{... }}} which is a member of itself. It is sometimes also called
the Axiom of Foundation, for reasons we will discuss in a moment.

You should examine the axioms of ZFC in turn to see if you think they are
true, that is, that they hold on von Neumann’s conception of set. Many of
the axioms are readily justified on this conception. Two that are not aren’t
obvious are the power set axiom and the Axiom of Regularity. Let us consider
these in turn, though briefly.

Sizes of infinite sets

Some philosophers have suggested that the power set of an infinite set might
be too large to be considered as a completed totality. To see why, let us start
by thinking about the size of the power set of finite sets. We have seen that
if we start with a set b of size n, then its power set pb has 2" members. For
example, if b has five members, then its power set has 2° = 32 members. But if
b has 1000 members, then its power set has 2'°°° members, an incredibly large
number indeed; larger, they say, than the number of atoms in the universe.
And then we could form the power set of that, and the power set of that,
gargantuan sets indeed.

But what happens if b is infinite? To address this question, one first has
to figure out what exactly one means by the size of an infinite set. Cantor
answered this question by giving a rigorous analysis of size that applied to all
sets, finite and infinite. For any set b, the Cantorian size of b is denoted | b |.
Informally, | b|=|c| just in case the members of b and the members of ¢ can
be associated with one another in a unique fashion. More precisely, what is
required is that there be a one-to-one function with domain b and range c.
(The notion of a one-to-one function was defined in Exercise 50.)

For finite sets, |b| behaves just as one would expect. This notion of size is
somewhat subtle when it comes to infinite sets, though. It turns out that for
infinite sets, a set can have the same size as some of its proper subsets. The
set N of all natural numbers, for example, has the same size as the set E of
even numbers; that is | N | = | E|. The main idea of the proof is contained in
the following picture:

01 2 n
11 !
0 2 4 20

This picture shows the sense in which there are as many even integers as there
are integers. (This was really the point of Exercise 15.51.) Indeed, it turns out
that many sets have the same size as the set of natural numbers, including

Axiom of Regularity or
Foundation

sizes of powersels

sizes of infinite sets

||
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the set of all rational numbers. The set of real numbers, however, is strictly
larger, as Cantor proved.
Cantor also showed that that for any set b whatsoever,

lpb| > |b]

This result is not surprising, given what we have seen for finite sets. (The
proof of Proposition 12 was really extracted from Cantor’s proof of this fact.)
The two together do raise the question as to whether an infinite set b could be
“small” but its power set “too large” to be a set. Thus the power set axiom
is not as unproblematic as the other axioms in terms of Von Neumann’s size
metaphor. Still, it is almost universally assumed that if b can be coherently
regarded as a fixed totality, so can @b. Thus the power set axiom is a full-
fledged part of modern set theory.

Cumulative sets

If the power set axiom can be questioned on the von Neumann’s conception
of a set as a collection that is not too large, the Axiom of Regularity is
clearly unjustified on this conception. Consider, for example, the irregular set
a = {{{...}}} mentioned above, a set ruled out by the Axiom of Regularity.
Notice that this set is its own singleton, a = {a}, so it has only one member.
Therefore there is no reason to rule it out on the grounds of size. There might
be some reason for ruling it out, but size is not one. Consequently, the Axiom
of Regularity does not follow simply from the conception of sets as collections
that are not too large.

To justify the Axiom of Regularity, one needs to augment von Neumann’s
size metaphor by what is known as the “cumulation” metaphor due to the
logician Zermelo.

Zermelo’s idea is that sets should be thought of as formed by abstract acts
of collecting together previously given objects. We start with some objects
that are not sets, collect sets of them, sets whose members are the objects
and sets, and so on and on. Before one can form a set by this abstract act of
collecting, one must already have all of its members, Zermelo suggested.

On this conception, sets come in distinct, discrete “stages,” each set arising
at the first stage after the stages where all of its members arise. For example,
if « arises as stage 17 and y at stage 37, then a = {z,y} would arise at stage
38. If b is constructed at some stage, then its powerset pb will be constructed
at the next stage. On Zermelo’s conception, the reason there can never be a
set of all sets is that as any set b arises, there is always its power set to be
formed later.
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The modern conception of set really combines these two ideas, von Neu-
mann’s and Zermelo’s. This conception of set is as a small collection which
is formed at some stage of this cumulation process. If we look back at the
irregular set @ = {{{...}}}, we see that it could never be formed in the cu-
mulative construction because one would first have to form its member, but
it is its only member.
More generally, let us see why, on the modified modern conception, that reqularity and
Axiom of Regularity is true. That is, let us prove that on this conception, no cumulation
set has a nonempty intersection with each of its own elements.

Proof: Let a be any set. We need to show that one of the elements
of a has an empty intersection with a. Among a’s elements, pick any
b € a that occurs earliest in the cumulation process. That is, for any
other ¢ € a, b is constructed at least as early as c¢. We claim that
bNa = 0. If we can prove this, we will be done. The proof is by
contradiction. Suppose that bNa # () and let ¢ € bNa. Since c € b, ¢
has to occur earlier in the construction process than b. On the other
hand, ¢ € a and b was chosen so that there was no ¢ € a constructed
earlier than b. This contradiction concludes the proof.

One of the reasons the Axiom of Regularity is assumed is that it gives one a
powerful method for proving theorems about sets “by induction.” We discuss
various forms of proof by induction in the next chapter. For the relation with
the Axiom of Regularity, see Exercise 16.10.

Remember

1. Modern set theory replaces the naive concept of set, which is incon-
sistent, with a concept of set as a collection that is not too large.

2. These collections are seen as arising in stages, where a set arises only
after all its members are present.

3. The axiom of comprehension of set theory is replaced by the Axiom
of Separation and some of the intuitively correct consequences of the
axiom of comprehension.

4. Modern set theory also contains the Axiom of Regularity, which is
justified on the basis of (2).

5. All the propositions stated in this chapter—with the exception of
Propositions 1 and 14—are theorems of ZFC.

SECTION 15.9
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Exercises
15.62 Write out the remaining axioms from above in FOL.
(S
15.63 Use the Axioms of Separation and Extensionality to prove that if any set exists, then the empty
15 set exists.
15.64 Try to derive the existence of the absolute Russell set from the Axiom of Separation. Where
S does the proof break down?
15.65 Verify our claim that all of Propositions 2-13 are provable using the axioms of zFC. (Some of
ar the proofs are trivial in that the theorems were thrown in as axioms. Others are not trivial.)
15.66 (Cantor’s Theorem) Show that for any set b whatsoever, | pb| # |b| . [Hint: Suppose that f is
SN a function mapping b one-to-one into b and then modify the proof of Proposition 12.]
15.67 (There is no universal set)
S 1. Verify that our proof of Proposition 12 can be carried out using the axioms of ZFC.
2. Use (1) to prove there is no universal set.
15.68 Prove that the Axiom of Separation and Extensionality are consistent. That is, find a universe
) of discourse in which both are clearly true. [Hint: consider the domain whose only element is
the empty set.]
15.69 Show that the theorem about the existence of aNb can be proven using the Axiom of Separation,
* but that the theorem about the existence of aUb cannot be so proven. [Come up with a domain
of sets in which the separation axiom is true but the theorem in question is false.]
15.70 (The Union Axiom and U) Exercise 15.69 shows us that we cannot prove the existence of a Ub
S from the Axiom of Separation. However, the Union Axiom of ZFC is stronger than this. It says
not just that a U b exists, but that the union of any set of sets exists.
1. Show how to prove the existence of a U b from the Union Axiom. What other axioms
of ZFC do you need to use?
2. Apply the Union Axiom to show that there is no set of all singletons. [Hint: Use proof
by contradiction and the fact that there is no universal set.]
15.71 Prove in zFC that for any two sets a and b, the Cartesian product a x b exists. The proof you
a* gave in an earlier exercise will probably not work here, but the result is provable.

CHAPTER 15
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While A and V have set-theoretic counterparts in N and U, there is no absolute counterpart
to —.
1. Use the axioms of ZFC to prove that no set has an absolute complement.
2. In practice, when using set theory, this negative result is not a serious problem. We
usually work relative to some domain of discourse, and form relative complements.
Justify this by showing, within zZrc, that for any sets a and b, there is a set ¢ = {x |
x €a Nz &b} This is called the relative complement of b with respect to a.

Assume the Axiom of Regularity. Show that no set is a member of itself. Conclude that, if we
assume Regularity, then for any set b, the Russell set for b is simply b itself.

(Consequences of the Axiom of Regularity)

1. Show that if there is a sequence of sets with the following property, then the Axiom of
Regularity is false:
.E€Qpt1 €an €... €02 € a1

2. Show that in ZFC we can prove that there are no sets b1,bs,..., by,..., where b, =
{TL, bn-‘rl}'

3. In computer science, a stream is defined to be an ordered pair (x, y) whose first element
is an “atom” and whose second element is a stream. Show that if we work in ZFC and
define ordered pairs as usual, then there are no streams.

There are alternatives to the Axiom of Regularity which have been explored in recent years.
We mention our own favorite, the axiom AFA, due to Peter Aczel and others. The name “AFA”
stands for “anti-foundation axiom.” Using AFA you can prove that a great many sets exist with
properties that contradict the Axiom of Regularity. We wrote a book, The Liar, in which we
used AFA to model and analyze the so-called Liar’s Paradox (see Exercise 19.32, page 555).
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