3
Turing Computability

A function is effectively computable if there are definite, explicit rules by following which
one could in principle compute its value for any given arguments. This notion will be
further explained below, but even after further explanation it remains an intuitive notion.
In this chapter we pursue the analysis of computability by introducing a rigorously
defined notion of a Turing-computable function. It will be obvious from the definition that
Turing-computable functions are effectively computable. The hypothesis that, conversely,
every effectively computable function is Turing computable is known as Turing’s thesis.
This thesis is not obvious, nor can it be rigorously proved (since the notion of effective
computability is an intuitive and not a rigorously defined one), but an enormous amount
of evidence has been accumulated for it. A small part of that evidence will be presented
in this chapter, with more in chapters to come. We first introduce the notion of Turing
machine, give examples, and then present the official definition of what it is for a function
to be computable by a Turing machine, or Turing computable.

A superhuman being, like Zeus of the preceding chapter, could perhaps write out the
whole table of values of a one-place function on positive integers, by writing each
entry twice as fast as the one before; but for a human being, completing an infinite
process of this kind is impossible in principle. Fortunately, for human purposes we
generally do not need the whole table of values of a function f, but only need the
values one at a time, so to speak: given some argument n, we need the value f(n). If
it is possible to produce the value f(n) of the function f for argument n whenever
such a value is needed, then that is almost as good as having the whole table of values
written out in advance.

A function f from positive integers to positive integers is called effectively com-
putable if a list of instructions can be given that in principle make it possible to
determine the value f(n) for any argument n. (This notion extends in an obvious
way to two-place and many-place functions.) The instructions must be completely
definite and explicit. They should tell you at each step what to do, not tell you to go
ask someone else what to do, or to figure out for yourself what to do: the instructions
should require no external sources of information, and should require no ingenuity
to execute, so that one might hope to automate the process of applying the rules, and
have it performed by some mechanical device.

There remains the fact that for all but a finite number of values of n, it will be
infeasible in practice for any human being, or any mechanical device, actually to carry

23



24 TURING COMPUTABILITY

out the computation: in principle it could be completed in a finite amount of time if we
stayed in good health so long, or the machine stayed in working order so long; but in
practice we will die, or the machine will collapse, long before the process is complete.
(There is also a worry about finding cnough spacc to store the intermediate results
of the computation, and even a worry about finding enough matter to use in writing
down those results: there’s only a finite amount of paper in the world, so you’d have to
writer smaller and smaller without limit; to get an infinite number of symbols down on
paper, eventually you’d be trying to write on molecules, on atoms, on electrons.) But
our present study will ignore these practical limitations, and work with an idealized
notion of computability that goes beyond what actual people or actual machines can
be sure of doing. Our eventual goal will be to prove that certain functions are not
computable, even if practical limitations on time, speed, and amount of material could
somehow be overcome, and for this purpose the essential requirement is that our
notion of computability not be too narrow.

So far we have been sliding over a significant point. When we are given as argument
anumber n or pair of numbers (m, n), what we in fact are directly given is a numeral for
n or an ordered pair of numerals for m and n. Likewise, if the value of the function
we are trying to compute is a number, what our computations in fact end with is a
numeral for that number. Now in the course of human history a great many systems
of numeration have been developed, from the primitive monadic or tally notation,
in which the number n is represented by a sequence of n strokes, through systems
like Roman numerals, in which bunches of five, ten, fifty, one-hundred, and so forth
strokes are abbreviated by special symbols, to the Hindu—Arabic or decimal notation
in common use today. Does it make a difference in a definition of computability
which of these many systems we adopt?

Certainly computations can be harder in practice with some notations than with
others. For instance, multiplying numbers given in decimal numerals (expressing the
product in the same form) is easier in practice than multiplying numbers given in
something like Roman numerals. Suppose we are given two numbers, expressed in
Roman numerals, say XXXIX and XLVIII, and are asked to obtain the product, also
expressed in Roman numerals. Probably for most us the easiest way to do this would
be first to translate from Roman to Hindu—Arabic—the rules for doing this are, or at
least used to be, taught in primary school, and in any case can be looked up in reference
works—obtaining 39 and 48. Next one would carry out the multiplication in our own
more convenient numeral system, obtaining 1872. Finally, one would translate the
result back into the inconvenient system, obtaining MDCCCLXXII. Doing all this
is, of course, harder than simply performing a multiplication on numbers given by
decimal numerals to begin with.

But the example shows that when a computation can be done in one notation, it
is possible in principle to do in any other notation, simply by translating the data
from the difficult notation into an easier one, performing the operation using the
easier notation, and then translating the result back from the easier to the difficult
notation. If a function is effectively computable when numbers are represented in
one system of numerals, it will also be so when numbers are represented in any other
system of numerals, provided only that translation between the systems can itself be



TURING COMPUTABILITY 25

carried out according to explicit rules, which is the case for any historical system of
numeration that we have been able to decipher. (To say we have been able to decipher
it amounts to saying that there are rules for translating back and forth between it and
the system now in common use.) For purposes of framing a rigorously defined notion
of computability, it is convenient to use monadic or tally notation.

A Turing machine is a specific kind of idealized machine for carrying out computa-
tions, especially computations on positive integers represented in monadic notation.
We suppose that the computation takes place on a tape, marked into squares, which
is unending in both directions—either because it is actually infinite or because there
is someone stationed at each end to add extra blank squares as needed. Each square
either is blank, or has a stroke printed on it. (We represent the blank by Sy or 0 or
most often B, and the stroke by S7 or | or most often 1, depending on the context.)
And with at most a finite number of exceptions, all squares are blank, both initially
and at each subsequent stage of the computation.

At each stage of the computation, the computer (that is, the human or mechanical
agent doing the computation) is scanning some one square of the tape. The computer
is capable of erasing a stroke in the scanned square if there is one there, or of printing
a stroke if the scanned square is blank. And he, she, or it is capable of movement:
one square to the right or one square to the left at a time. If you like, think of the
machine quite crudely, as a box on wheels which, at any stage of the computation,
is over some square of the tape. The tape is like a railroad track; the ties mark the
boundaries of the squares; and the machine is like a very short car, capable of moving
along the track in either direction, as in Figure 3-1.

-z i e

Figure 3-1. A Turing machine.

At the bottom of the car there is a device that can read what’s written between
the ties, and erase or print a stroke. The machine is designed in such a way that
at each stage of the computation it is in one of a finite number of internal szates,
q1, .. .,qnm. Being in one state or another might be a matter of having one or another
cog of a certain gear uppermost, or of having the voltage at a certain terminal inside
the machine at one or another of m different levels, or what have you: we are not
concerned with the mechanics or the electronics of the matter. Perhaps the simplest
way to picture the thing is quite crudely: inside the box there is a little man, who
does all the reading and writing and erasing and moving. (The box has no bottom:
the poor mug just walks along between the ties, pulling the box along.) This operator
inside the machine has a list of m instructions written down on a piece of paper and
is in state q; when carrying out instruction number i.

Each of the instructions has conditional form: it tells what to do, depending on
whether the symbol being scanned (the symbol in the scanned square) is the blank or



26 TURING COMPUTABILITY

stroke, So or S1. Namely, there are five things that can be done:

(1) Erase: write Sy in place of whatever is in the scanned square.
(2) Print: writc S in place of whatever is in the scanned square.
(3) Move one square to the right.

(4) Move one square to the left.

(5) Halt the computation.

[In case the square is already blank, (1) amounts to doing nothing; in case the
square already has a stroke in it, (2) amounts to doing nothing.] So depending on
what instruction is being carried out (= what state the machine, or its operator, is
in) and on what symbol is being scanned, the machine or its operator will perform
one or another of these five overt acts. Unless the computation has halted (overt act
number 5), the machine or its operator will perform also a covert act, in the privacy
of box, namely, the act of determining what the next instruction (next state) is to be.
Thus the present state and the presently scanned symbol determine what overt act is
to be performed, and what the next state is to be.

The overall program of instructions can be specified in various ways, for example,
by a machine table, or by a flow chart (also called a flow graph), or by a set of
quadruples. For the case of a machine that writes three symbols S| on a blank tape
and then halts, scanning the leftmost of the three, the three sorts of description are
illustrated in Figure 3-2.

(a) Machine table (b) Flow chart (c) Set of quadruples

Scanned symbol )

. S, S, S54: 8, S,:8, Se:8: 1505191, 15114

Saqls (Y 6.0 Do S S SI

2 11 Lgz o S,:L o S:L o 42505192, 4251145

S @ S19, Ly 3505193

-]

& g3 S|(}3

Figure 3-2. A Turing machine program.

3.1 Example (Writing a specified number of strokes). We indicate in Figure 3-2 a ma-
chine that will write the symbol S; three times. A similar construction works for any
specified symbol and any specified number of times. The machine will write an S, on the
square it’s initially scanning, move left one square, write an S; there, move left one more
square, write an S; there, and halt. (It halts when it has no further instructions.) There
will be three states—one for each of the symbols S; that are to be written. In Figure 3-2,
the entries in the top row of the machine table (under the horizontal line) tell the ma-
chine or its operator, when following instruction g, that (1) an S; is to be written and
instruction g is to be repeated, if the scanned symbol is Sy, but that (2) the machine is
to move left and follow instruction g, next, if the scanned symbol is S;. The same infor-
mation is given in the flow chart by the two arrows that emerge from the node marked
q1; and the same information is also given by the first two quadruples. The significance



TURING COMPUTABILITY 27

in general of a table entry, of an arrow in a flow chart, and of a quadruple is shown in
Figure 3-3.
(a) Table entry (b) Arrow in flow chart (¢) Quadruple

Scanned
symbol - 2

Present

alate [Same as for arrows]

Act : Next state

Figure 3-3. A Turing machine instruction.

Unless otherwise stated, it is to be understood that a machine starts in its lowest-numbered
state. The machine we have been considering halts when it is in state g3 scanning S, for
there is no table entry or arrow or quadruple telling it what to do in such a case. A virtue
of the flow chart as a way of representing the machine program is that if the starting state
is indicated somehow (for example, if it is understood that the leftmost node represents
the starting state unless there is an indication to the contrary), then we can dispense with
the names of the states: It doesn’t matter what you call them. Then the flow chart could be
redrawn as in Figure 3-4.

So: S, Sa: S, S¢S,

8 5L 8 S,:L 8

Figure 3-4. Writing three strokes.

We can indicate how such a Turing machine operates by writing down its sequence
of configurations. There is one configuration for cach stage of the computation, showing
what’s on the tape at that stage, what state the machine is in at that stage, and which square
is being scanned. We can show this by writing out what’s on the tape and writing the name
of the present state under the symbol in the scanned square; for instance,

1100111
2

shows a string or block of two strokes followed by two blanks followed by a string or block
of three strokes, with the machine scanning the leftmost stroke and in state 2. Here we have
written the symbols Sy and S; simply as 0 and 1, and similarly the state g, simply as 2,
to save needless fuss. A slightly more compact representation writes the state number as a
subscript on the symbol scanned: 1,100111.

This same configuration could be written 01,100111 or 1,1001110 or 01,1001110 or
001,100111 or .. .—ablock of Os can be written at the beginning or end of the tape, and can
be shorted or lengthened ad lib. without changing the significance: the tape is understood
to have as many blanks as you please at each end.

We can begin to get a sense of the power of Turing machines by considering some
more complex examples.



28 TURING COMPUTABILITY

3.2 Example (Doubling the number of strokes). The machine starts off scanning the left-
most of a block of strokes on an otherwise blank tape, and winds up scanning the leftmost
of a block of twice that many strokes on an otherwise blank tape. The flow chart is shown
in Figure 3-5.

Figure 3-5. Doubling the number of strokes.

How does it work? In general, by writing double strokes at the left and erasing single
strokes at the right. In particular, suppose the initial configuration is 1,11, so that we start
in state 1, scanning the leftmost of a block of three strokes on an otherwise blank tape. The
next few configurations are as follows:

02111 050111 150111 0410111 1410111.

So we have written our first double stroke at the left—separated from the original block
111 by a blank. Next we go right, past the blank to the right-hand end of the original block,
and erase the rightmost stroke. Here is how that works, in two phases. Phase 1:

1150111 1105111 110111 110111 110111 1101110.

Now we know that we have passed the last of the original block of strokes, so (phase 2) we
back up, erase one of them, and move one more square left:

1101115 110110 1101150.

Now we hop back left, over what is left of the original block of strokes, over the blank
separating the original block from the additional strokes we have printed, and over those
additional strokes, until we find the blank beyond the leftmost stroke:

110141 110911 11,0011 1101011 01011011.
Now we will print another two new strokes, much as before:
01,1011 0511011 1511011 04111011 14111011.

We are now back on the leftmost of the block of newly printed strokes, and the process
that led to finding and erasing the rightmost stroke will be repeated, until we arrive at the
following:

11110114 1111010, 11110140.
Another round of this will lead first to writing another pair of strokes:

141111101.



TURING COMPUTABILITY 29

It will then lead to erasing the last of the original block of strokes:
111111015 111111005 111111050.

And now the endgame begins, for we have what we want on the tape, and need only move
back to halt on the leftmost stroke:

1111, (10 11 i iir 1,111 1,,11111
0, 111111 111111,

Now we are in state 12, scanning a stroke. Since there is no arrow from that node telling us
what to do in such a case, we halt. The machine performs as advertised.

(Note: The fact that the machine doubles the number of strokes when the original number
is three is not a proof that the machine performs as advertised. But our examination of the
special case in which there are three strokes initially made no essential use of the fact that
the initial number was three: it is readily converted into a proof that the machine doubles
the number of strokes no matter how long the original block may be.)

Readers may wish, in the remaining examples, to try to design their own machines
before reading our designs; and for this reason we give the statements of all the
examples first, and collect all the proofs afterward.

3.3 Example (Determining the parity of the length of a block of strokes). There is a Turing
machine that, started scanning the leftmost of an unbroken block of strokes on an otherwise
blank tape, eventually halts, scanning a square on an otherwise blank tape, where the square
contains a blank or a stroke depending on whether there were an even or an odd number of
strokes in the original block.

3.4 Example (Adding in monadic (tally) notation). There is a Turing machine that does
the following. Initially, the tape is blank except for two solid blocks of strokes, say a left
block of p strokes and a right block of ¢ strokes, separated by a single blank. Started on the
leftmost blank of the left block, the machine eventually halts, scanning the leftmost stroke
in a solid block of p + ¢ stokes on an otherwise blank tape.

3.5 Example (Multiplying in monadic (tally) notation). There is a Turing machine that
does the same thing as the one in the preceding example, but with p - g in place of p + ¢.

Proofs
Example 3.3. A flow chart for such a machine is shown in Figure 3-6.

Figure 3-6. Parity machine.

If there were O or 2 or 4 or . . . strokes to begin with, this machine halts in state 1,
scanning a blank on a blank tape; if there were 1 or 3 or 5 or .. ., it halts in state 5,
scanning a stroke on an otherwise blank tape.



30 TURING COMPUTABILITY

Example 3.4. The object is to erase the leftmost stroke, fill the gap between the
two blocks of strokes, and halt scanning the leftmost stroke that remains on the tape.
Here is one way of doing it, in quadruple notation: q1S51S0q1; q1S0Rq2; q2S1Rq2;
425051935 351Lq3; q3SoRq4.

Example 3.5. A flow chart for a machine is shown in Figure 3-7.

At this point the machine is scanning the
leftmost 1 on the tape.

Erase the leftmost 1 remaining
in the counter group, and
move right. The counter group is empty.
Move right, writing
1s as you go, until
you reach the
leapfrog group.

Then back

off to the left,
(- and halt on the
leftmost 1 on
the tape.

The counter group is not yet
empty. Go to the second
square to the right of it.

Leapfrog routine

Find and erase the
leftmost 1 in the leapfrog
group. Go right

1 square

‘This round of leapfrog
is not over, so

Go left to
the beginning
of the counter

Go 2 squares right of group.

1st block of 1s in leapfrog
group. Write a 1 there if
it is blank. But if it isn't,
write a 1 at the right

of the whole leapfrog
group.

Figure 3-7. Multiplication machine.

Here is how the machine works. The first block, of p strokes, is used as a counter,
to keep track of how many times the machine has added g strokes to the group at the
right. To start, the machine crascs the leftmost of the p strokes and sees if there arc
any strokes left in the counter group. If not, pg = ¢, and all the machine has to do is
position itself over the leftmost stroke on the tape, and halt.



TURING COMPUTABILITY 31

But if there are any strokes left in the counter, the machine goes into a leapfrog
routine: in effect, it moves the block of g strokes (the leapfrog group) g places to
the right along the tape. For example, with p = 2 and ¢ = 3 the tape looks like this
initially:

11B111
and looks like this after going through the leapfrog routine:
B1BBBBI111.

The machine will then note that there is only one 1 left in the counter, and will finish
up by erasing that 1, moving right two squares, and changing all Bs to strokes until
it comes to a stroke, at which point it continues to the leftmost 1 and halts.

The general picture of how the leapfrog routine works is shown in Figure 3-8.

T3

Counter Leapfrog group
group

Figure 3-8. Leapfrog.

In general, the leapfrog group consists of a block of 0 or 1 or ...or g strokes,
followed by a blank, followed by the remainder of the g strokes. The blank is there
to tell the machine when the leapfrog game is over: without it the group of g strokes
would keep moving right along the tape forever. (In playing leapfrog, the portion of
the g strokes to the left of the blank in the leapfrog group functions as a counter:
it controls the process of adding strokes to the portion of the leapfrog group to the
right of the blank. That is why there are two big loops in the flow chart: one for each
counter-controlled subroutine.)

We have not yet given an official definition of what it is for a numerical function
to be computable by a Turing machine, specifying how inputs or arguments are to be
represented on the machine, and how outputs or values represented. Our specifications
for a k-place function from positive integers to positive integers are as follows:

(a) The arguments m, ..., my of the function will be represented in monadic notation
by blocks of those numbers of strokes, each block separated from the next by a
single blank, on an otherwise blank tape. Thus, at the beginning of the
computation of, say, 3 + 2, the tape will look like this: 111B11.

(b) Initially, the machine will be scanning the leftmost 1 on the tape, and will be in its
initial state, state 1. Thus in the computation of 3 4- 2, the initial configuration will
be 1;11B11. A configuration as described by (a) and (b) is called a standard initial
configuration (or position).

(c) If the function that is to be computed assigns a value n to the arguments that are
represented initially on the tape, then the machine will eventually halt on a tape



32 TURING COMPUTABILITY

containing a block of that number of strokes, and otherwise blank. Thus in the
computation of 3 4 2, the tape will look like this: 11111.

(d) In this case, the machine will halt scanning the leftmost 1 on the tape. Thus in the
computation of 3 + 2, the final configuration will be 1,,1111, where nth state is one
for which there is no instruction what to do if scanning a stroke, so that in this
configuration the machine will be halted. A configuration as described by (c) and
(d) is called a standard final configuration (or position).

(e) If the function that is to be computed assigns no value to the arguments that are
represented initially on the tape, then the machine either will never halt, or will
halt in some nonstandard configuration such as B,11111 or B11,111 or B11111,,.

The restriction above to the standard position (scanning the leftmost 1) for starting
and halting is inessential, but some specifications or other have to be made about
initial and final positions of the machine, and the above assumptions seem especially
simple.

With these specifications, any Turing machine can be seen to compute a function of
one argument, a function of two arguments, and, in general, a function of k arguments
for each positive integer k. Thus consider the machine specified by the single quadru-
ple g1 11¢». Started in a standard initial configuration, it immediately halts, leaving the
tape unaltered. If there was only a single block of strokes on the tape initially, its final
configuration will be standard, and thus this machine computes the identity function id
of one argument: id(m) = m for each positive integer m. Thus the machine computes
a certain total function of one argument. But if there were two or more blocks of
strokes on the tape initially, the final configuration will not be standard. Accordingly,
the machine computes the extreme partial function of two arguments that is undefined
for all pairs of arguments: the empty function e, of two arguments. And in general,
for k arguments, this machine computes the empty function e; of k arguments.

B:1 _@

B:R

Figure 3-9. A machine computing the value 1 for all arguments.

By contrast, consider the machine whose flow chart is shown in Figure 3-9. This
machine computes for each & the total function that assigns the same value, namely 1,
to each k-tuple. Started in initial state 1 in a standard initial configuration, this machine
erases the first block of strokes (cycling between states 1 and 2 to do so) and goes to
state 3, scanning the second square to the right of the first block. If it sees a blank there,
it knows it has erased the whole tape, and so prints a single 1 and halts in state 4, in
a standard configuration. If it sees a stroke there, it re-enters the cycle between states
1 and 2, erasing the second block of strokes and inquiring again, in state 3, whether
the whole tape is blank, or whether there are still more blocks to be dealt with.



TURING COMPUTABILITY 33

A numerical function of k arguments is Turing computable if there is some Turing
machine that computes it in the sense we have just been specifying. Now computation
in the Turing-machine sense is certainly one kind of computation in the intuitive
sense, so all Turing-computable functions arc cffectively computable. Turing’s thesis
is that, conversely, any effectively computable function is Turing computable, so that
computation in the precise technical sense we have been developing coincides with
effective computability in the intuitive sense.

It is easy to imagine liberalizations of the notion of the Turing machine. One could
allow machines using more symbols than just the blank and the stroke. One could
allow machines operating on a rectangular grid, able to move up or down a square as
well as left or right. Turing’s thesis implies that no liberalization of the notion of Turing
machine will enlarge the class of functions computable, because all functions that are
effectively computable in any way at all are already computable by a Turing machine
of the restricted kind we have been considering. Turing’s thesis is thus a bold claim.

It is possible to give a heuristic argument for it. After all, effective computation
consists of moving around and writing and perhaps erasing symbols, according to
definite, explicit rules; and surely writing and erasing symbols can be done stroke by
stroke, and moving from one place to another can be done step by step. But the main
argument will be the accumulation of examples of effectively computable functions
that we succeed in showing are Turing computable. So far, however, we have had
just a few examples of Turing machines computing numerical functions, that is,
of effectively computable functions that we have proved to be Turing computable:
addition and multiplication in the preceding section, and just now the identity function,
the empty function, and the function with constant value 1.

Now addition and multiplication are just the first two of a series of arithmetic
operations all of which are effectively computable. The next item in the series is ex-
ponentiation. Just as multiplication is repeated addition, so exponentiation is repeated
multiplication. (Then repeated exponentiation gives a kind of super-exponentiation,
and so on. We will investigate this general process of defining new functions from
old in a later chapter.) If Turing’s thesis is correct, there must be a Turing machine
for each of these functions, computing it. Designing a multiplier was already difficult
enough to suggest that designing an exponentiator would be quite a challenge, and
in any case, the direct approach of designing a machine for each operation would
take us forever, since there are infinitely many operations in the series. Moreover,
there are many other effectively computable numerical functions besides the ones in
this series. When we return, in the chapter after next, to the task of showing vari-
ous effectively computable numerical functions to be Turing computable, and thus
accumulating evidence for Turing’s thesis, a less direct approach will be adopted,
and all the operations in the series that begins with addition and multiplication will
be shown to be Turing computable in one go.

For the moment, we set aside the positive task of showing functions to be Turing
computable and instead turn to examples of numerical functions of one argument
that are Turing uncomputable (and so, if Turing’s thesis is correct, effectively uncom-
putable).



34 TURING COMPUTABILITY

Problems

3.1 Consider a tape containing a block of n strokes, followed by a space, followed
by a block of m strokes, followed by a space, followed by a block of k strokes,
and otherwise blank. Design a Turing machine that when started on the leftmost
stroke will eventually halt, having neither printed nor erased anything . . .

(a) ... on the leftmost stroke of the second block.
(b) ... on the leftmost stroke of the third block.

3.2 Continuing the preceding problem, design a Turing machine that when started
on the leftmost stroke will eventually halt, having neither printed nor erased
anything. ..

(a) ... on the rightmost stroke of the second block.
(b) ... on the rightmost stroke of the third block.

3.3 Design a Turing machine that, starting with the tape as in the preceding problems,
will eventually halt on the leftmost stroke on the tape, which is now to contain a
block of n strokes, followed by a blank, followed by a block of m + 1 strokes,
followed by a blank, followed by a block of k strokes.

3.4 Design a Turing machinc that, starting with the tape as in the preceding problems,
will eventually halt on the leftmost stroke on the tape, which is now to contain a
block of n strokes, followed by a blank, followed by a block of m — 1 strokes,
followed by a blank, followed by a block of k strokes.

3.5 Design a Turing machine to compute the function min(x, y) = the smaller of x
and y.

3.6 Design a Turing machine to compute the function max(x, y) = the larger of
x and y.



4

Uncomputability

In the preceding chapter we introduced the notion of Turing computability. In the present
short chapter we give examples of Turing-uncomputable functions: the halting function
in section 4.1, and the productivity function in the optional section 4.2. If Turing’s thesis
is correct, these are actually examples of effectively uncomputable functions.

4.1 The Halting Problem

There are too many functions from positive integers to positive integers for them all
to be Turing computable. For on the one hand, as we have seen in problem 2.2, the
set of all such functions is nonenumerable. And on the other hand, the set of Turing
machines, and therefore of Turing-computable functions, is enumerable, since the re-
presentation of a Turing machine in the form of quadruples amounts to arepresentation
of it by a finite string of symbols from a finite alphabet; and we have seen in Chapter 1
that the set of such strings is enumerable. These considerations show us that there must
exist functions that are not Turing computable, but they do not provide an explicit
example of such a function. To provide explicit examples is the task of this chapter.
We begin simply by examining the argument just given in slow motion, with careful
attention to details, so as to extract a specific example of a Turing-uncomputable
function from it.

To begin with, we have suggested that we can enumerate the Turing-computable
functions of one argument by enumerating the Turing machines, and that we can enu-
merate the Turing machines using their quadruple representations. As we turn to de-
tails, it will be convenient to modify the quadruple representation used so far some-
what. To indicate the nature of the modifications, consider the machine in Figure 3-9
in the preceding chapter. Its quadruple representation would be

q1SoRq3, 41515042, 250Rq1, 438505194, g351S0q2.

We have already been taking the lowest-numbered state g to be the initial state.
We now want to assume that the highest-numbered state is a halted state, for which
there are no instructions and no quadruples. This is already the case in our example,
and if it were not already so in some other example, we could make it so by adding
one additional state.

SV}
(9}



36 UNCOMPUTABILITY

We now also want to assume that for every state g; except this highest-numbered
halted state, and for each of the two symbols S; we are allowing ourselves to use,
namely So = B and §; = 1, there is a quadruple beginning g; S;. This is not so in our
example as it stands, where there is no instruction for ¢;.S1. We have been interpreting
the absence of an instruction for g;S; as an instruction to halt, but the same effect
could be achieved by giving an explicit instruction to keep the same symbol and then
go to the highest-numbered state. When we modify the representation by adding this
instruction, the representation becomes

q150Rq3, 41515092, 4280 Rq1, 42818194, q350S5194, 43515092

Now taking the quadruples beginning ¢1S9, g1S51, 250, . .. in that order, as we
have done, the first two symbols of each quadruple are predictable and therefore do
not need to be written. So we may simply write

Rq3, Soq2, Rq1, S1q4, S194, Soqa-

Representing g; by i, and §; by j + 1 (so as to avoid 0), and L and R by 3 and 4, we
can write still more simply

4,3,1,2,4,1,2,4,2,4,1,2.

Thus the Turing machine can be completely represented by a finite sequence of
positive integers—and even, if desired, by a single positive integer, say using the
method of coding based on prime decomposition:

24.33.5.72.11% . 13- 177 . 19* . 232. 29* . 31 . 372,

Not every positive integer will represent a Turing machine: whether a given posi-
tive integer does so or not depends on what the sequence of exponents in its prime
decomposition is, and not every finite sequence represents a Turing machine. Those
that do must have length some multiple 4n of 4, and have among their odd-numbered
centrics only numbers 1 to 4 (representing B, 1, L, R) and among their even-numbered
entries only numbers 1 to n + 1 (representing the initial state g, various other states
gi, and the halted state g,,+1). But no matter: from the above representation we at least
get a gappy listing of all Turing machines, in which each Turing machine is listed
at least once, and on filling in the gaps we get a gapless list of all Turing machines,
M, M, M5, ..., and from this a similar list of all Turing-computable functions of
one argument, fi, f2, f3, ..., where f; is the total or partial function computed by M;.

To give a trivial example, consider the machine represented by (1, 1, 1, 1), or
2-3.5.7 =210. Started scanning a stroke, it erases it, then leaves the resulting
blank alone and remains in the same initial state, never going to the halted state,
which would be state 2. Or consider the machine represented by (2, 1, 1, 1) or
22.3.5.7 =420. Started scanning a stroke, it erases it, then prints it back again,
then erases it, then prints it back again, and so on, again never halting. Or consider
the machine represented by (1, 2, 1, 1), or 2 - 32.5.7 = 630. Started scanning a
stroke, it erases it, then goes to the halted state 2 when it scans the resulting blank,
which means halting in a nonstandard final configuration. A little thought shows that
210, 420, 630 are the smallest numbers that represent Turing machines, so the three



4.1. THE HALTING PROBLEM 37

machines just described will be M|, M>, M3, and we have f1 = fo = f3 =the empty
function.

We have now indicated an explicit enumeration of the Turing-computable functions
of one argument, obtained by enumerating the machines that compute them. The fact
that such an enumeration is possible shows, as we remarked at the outset, that there
must exist Turing-uncomputable functions of a single argument. The point of actually
specifying one such enumeration is to be able to exhibit a particular such function.
To do so, we define a diagonal function d as follows:

2 if f,(n)is defined and = 1
1 otherwise.

ey d(n) = {

Now d is a perfectly genuine total function of one argument, but it is not Turing
computable, that is, d is neither f; nor f; nor f3, and so on. Proof: Suppose that d is
one of the Turing computable functions—the mth, let us say. Then for each positive
integer n, either d(n) and f,,(n) are both defined and equal, or neither of them is
defined. But consider the case n = m:

2 if f,,(m) is defined and = 1
1 otherwise.

@ Jm(m) =d(m) = {

Then whether f,,(m) is or is not defined, we have a contradiction: Either f,,(m) is
undefined, in which case (2) tells us that it is defined and has value 1; or f;,(m)
is defined and has a value #1, in which case (2) tells us it has value 1; or f,,(m)
is defined and has value 1, in which case (2) tells us it has value 2. Since we
have derived a contradiction from the assumption that d appears somewhere in the
list f1, fo. ..., fm, ..., we may conclude that the supposition is false. We have
proved:

4.1 Theorem. The diagonal function d is not Turing computable.

According to Turing’s thesis, since d is not Turing computable, d cannot be
effectively computable. Why not? After all, although no Turing machine computes
the function d, we were able compute at least its first few values. For since, as we
have noted, f1 = f> = f3 = the empty function we have d(1) =d(2) =d(3) = 1.
And it may seem that we can actually compute d(n) for any positive integer n—if we
don’t run out of time.

Certainly it is straightforward to discover which quadruples determine M,, forn =
1, 2,3, and so on. (This is straightforward in principle, though eventually humanly
infeasible in practice because the duration of the trivial calculations, for large n,
exceeds the lifetime of a human being and, in all probability, the lifetime of the
human race. But in our idealized notion of computability, we ignore the fact that
human life is limited.)

And certainly it is perfectly routine to follow the operations of M,,, once the initial
configuration has been specified; and if M,, does eventually halt, we must eventually
gct that information by following its operations. Thus if we start M, with input n and
it does halt with that input, then by following its operations until it halts, we can see
whether it halts in nonstandard position, leaving f;,(n) undefined, or halts in standard



38 UNCOMPUTABILITY

position with output f,,(n) = 1, or halts in standard position with output f,(n) # 1.
In the first or last cases, d(n) = 1, and in the middle case, d(n) = 2.

But there is yet another case where d(n) = 1; namely, the case where M,, never
halts at all. If M,, is destined never to halt, given the initial configuration, can we
find that out in a finite amount of time? This is the essential question: determining
whether machine M,,, started scanning the leftmost of an unbroken block of n strokes
on an otherwise blank tape, does or does not eventually halt.

Is this perfectly routine? Must there be some point in the routine process of fol-
lowing its operations at which it becomes clear that it will never halt? In simple cases
this is so, as we saw in the cases of M, M», and M3 above. But for the function d to
be effectively computable, there would have to be a uniform mechanical procedure,
applicable not just in these simple cases but also in more complicated cases, for dis-
covering whether or not a given machine, started in a given configuration, will ever
halt.

Thus consider the multiplier in Example 3.5. Its sequential representation would
be a sequence of 68 numbers, each <18. It is routine to verify that it represents
a Turing machine, and one can casily enough derive from it a flow chart like the
one shown in Figure 3-7, but without the annotations, and of course without the
accompanying text. Suppose one came upon such a sequence. It would be routine
to check whether it represented a Turing machine and, if so, again to derive a flow
chart without annotations and accompanying text. But is there a uniform method
or mechanical routine that, in this and much more complicated cases, allows one to
determine from inspecting the flow chart, without any annotations or accompanying
text, whether the machine eventually halts, once the initial configuration has been
specified?

If there is such a routine, Turing’s thesis is erroneous: if Turing’s thesis is correct,
there can be no such routine. At present, several generations after the problem was
first posed, no one has yet succeeded in describing any such routine—a fact that must
be considered some kind of evidence in favor of the thesis.

Let us put the matter another way. A function closely related to d is the halting
Sfunction h of two arguments. Here h(m, n) = 1 or 2 according as machine m, started
with input n, eventually halts or not. If &2 were effectively computable, d would
be effectively computable. For given n, we could first compute h(n, n). If we got
h(n,n) =2, we would know that d(n) = 1. If we got h(n, n) = 1, we would know
that we could safely start machine M,, in stardard initial configuration for input n, and
that it would eventually halt. If it halted in nonstandard configuration, we would again
have d(n) = 1. If it halted in standard final configuration giving an output f;,(n), it
would have d(n) = 1 or 2 according as f,(n) # 1 or = 1.

This is an informal argument showing that if & were effectively computable, then d
would be effectively computable. Since we have shown that d is not Turing com-
putable, assuming Turing’s thesis it follows that d is not effectively computable, and
hence that 4 is not effectively computable, and so not Turing computable. It is also
possible to prove rigorously, though we do not at this point have the apparatus needed
to do so, that if & were Turing computable, then d would be Turing computable, and
since we have shown that d is not Turing computable, this would show that % is not



4.1. THE HALTING PROBLEM 39

Turing computable. Finally, it is possible to prove rigorously in another way, not
involving d, that h is not Turing computable, and this we now do.

4.2 Theorem. The halting function / is not Turing computable.

Proof: By way of background we need two special Turing machines. The first is
a copying machine C, which works as follows. Given a tape containing a block of n
strokes, and otherwise blank, if the machine is started scanning the leftmost stroke
on the tape, it will eventually halt with the tape containing two blocks of n strokes
separated by a blank, and otherwise blank, with the machine scanning the leftmost
stroke on the tape. Thus if the machine is started with

...BBB1111BBB ...
it will halt with
...BBB1111B1111BBB ...

eventually. We ask you to design such a machine in the problems at the end of this
chapter (and give you a pretty broad hint how to do it at the end of the book).

The second is a dithering machine D. Started on the leftmost of a block of n strokes
on an otherwise blank tape, D eventually halts if n > 1, but never halts if n = 1. Such
a machine is described by the sequence

1,3,4,2,3,1,3,3.

Started on a stroke in state 1, it moves right and goes into state 2. If it finds itself on a
stroke, it moves back left and halts, but if it finds itself on a blank, it moves back left
and goes into state 1, starting an endless back-and-forth cycle.

Now suppose we had amachine H that computed the function /. We could combine
the machines C and H as follows: if the states of C are numbered 1 through p,
and the states of H arc numbered | through g, renumber the latter states p + 1
through r = p 4 g, and write these renumbered instructions after the instructions
for C. Originally, C tells us to halt by telling us to go into state p + 1, but in the
new combined instructions, going into state p 4+ 1 means not halting, but beginning
the operations of machine H. So the new combined instructions will have us first
go through the operations of C, and then, when C would have halted, go through
the operations of H. The result is thus a machine G that computes the function
g(n) = h(n, n).

We now combine this machine G with the dithering machine D, renumbering the
states of the latter as r + 1 and r 4 2, and writing its instructions after those for G.
The result will be a machine M that goes through the operations of G and then the
operations of D. Thus if machine number n halts when started on its own number,
that is, if #(n,n) = g(n) = 1, then the machine M does not halt when started on
that number n, whereas if machine number n does not halt when started on its own
number, that is, if A(n, n) = g(n) = 2, then machine M does halt when started on n.

But of course there can be no such machine as M. For what would it do if started
with input its own number m? It would halt if and only if machine number m, which is



40 UNCOMPUTABILITY

to say itself, does not halt when started with input the number m. This contradiction
shows there can be no such machine as H.

The halting problem is to find an effective procedure that, given any Turing machine
M, say represented by its number m, and given any number n, will enable us to
determine whether or not that machine, given that number as input, ever halts. For
the problem to be solvable by a Turing machine would require there to be a Turing
machine that, given m and n as inputs, produces as its output the answer to the question
whether machine number m with input n ever halts. Of course, a Turing machine of
the kind we have been considering could not produce the output by printing the word
‘yes’ or ‘no’ on its tape, since we are considering machines that operate with just
two symbols, the blank and the stroke. Rather, we take the affirmative answer to be
presented by an output of 1 and the negative by an output of 2. With this understanding,
the question whether the halting problem can be solved by a Turing machine amounts
to the question whether the halting function 4 is Turing computable, and we have just
seen in Theorem 4.2 that it is not. That theorem, accordingly, is often quoted in the
form: ‘The halting problem is not solvable by a Turing machine.” Assuming Turing’s
thesis, it follows that it is not solvable at all.

Thus far we have two examples of functions that are not Turing computable—
or problems that are not solvable by any Turing machine—and if Turing’s thesis is
correct, these functions are not effectively computable. A further example is given
in the next section. Though working through the example will provide increased
familiarity with the potential of Turing machines that will be desirable when we
come to the next chapter, and in any case the example is a beautiful one, still none of
the material connected with this example is strictly speaking indispensable for any
of our further work; and therefore we have starred the section in which it appears as
optional.

4.2*% The Productivity Function

Consider a k-state Turing machine, that is, a machine with k states (not counting the
halted state). Start it with input k, that is, start it in its initial state on the leftmost
of a block of k strokes on an otherwise blank tape. If the machine never halts, or
halts in nonstandard position, give it a score of zero. If it halts in standard position
with output 7, that is, on the leftmost of a block of n strokes on an otherwise blank
tape, give it a score of n. Now define s(k) = the highest score achieved by any k-state
Turing machine. This function can be shown to be Turing uncomputable.

We first show that if the function s were Turing computable, then so would be the
function ¢ given by #(k) = s(k) + 1. For supposing we have a machine that computes
s, we can modify it as follows to get a machine, having one more state than the original
machine, that computes . Where the instructions for the original machine would have
it halt, the instructions for the new machine will have it go into the new, additional
statc. In this new state, if the machine is scanning a stroke, it is to move one squarc
to the left, remaining in the new state; while if it is scanning a blank, it is to print a
stroke and halt. A little thought shows that a computation of the new machine will



