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GÖDEL’S PROOF OF INCOMPLETENESS 
 
 

We assume that System H is a consistent formal theory of arithmetic, and we already showed 
that it strongly represents all recursive functions. (The Expressibility Lemma for H.) Below, we 
will see it also has a decidable set of wff and a decidable set of proofs. Thus, GG secures that H 
is not negation-complete.  (Gödel’s First Incompleteness Theorem for H.) 
 
However, Gödel’s own proof of incompleteness is a bit different. It also relies crucially on EL, 
the consistency of the formal system, and the decidability of wff/proofs. But instead of going via 
GG, it instead unearths a particular sentence such that neither it nor its negation is a theorem.  
 
 
Preliminary: Gödel Numbering 
 
We need to make decidable the set of wff of H, and the set of its proofs. To this end, we assign 
numbers to symbols and sequences of symbols, but we need our coding to be more nuanced than 
before. It is one thing for ‘p’ to be a wff, and another thing for ‘p’ to be a one-line proof within 
the system (e.g., in a system where ‘p’ is axiomatic). So ‘p’ as a wff requires a different code 
than ‘p’ as a proof.  
 
Gödel invented a numbering system which enables such distinctions. We begin by assigning the 
first odd numbers >1 to the basic symbols of the language: 
 
Symbol Number Symbol Number 
p 3 * 15 
ʹ 5 ~ 17 
x 7  19 
a 
f  
F 

9 
11 
13 

∧ 
( 
) 

21 
23 
25 

    
To determine the Gödel number for a wff, we take the Gödel numbers of its n basic symbols, and 
assign them (in order) as exponents to the first n members of the sequence of primes  
2, 3, 5, 7, …. The Gödel number for the wff is then the product of the exponentiated primes. 
Thus, the sentence ‘Fʹaʹ’ is assigned 213 ∙ 35 ∙ 59 ∙ 75, whereas the sentence ‘p’ is assigned 23 = 8. 
And in general, a wff will always have an even Gödel number, unlike a basic symbol. 
 
Consider now a proof consisting of the wff A1, A2…An. To determine its Gödel number, take the 
Gödel numbers for those wff, and assign them (in order) as the exponents to the first n members 
of the sequence of primes. The number for the proof is then the product of those exponentiated 
primes. E.g., the proof consisting just of ‘p’ will have a Gödel number of 28 = 16. And the proof 
consisting of ‘p’ followed by ‘p  p’ will have the Gödel number 28 ∙ 3k, where k is the Gödel 
number for ‘p  p’. Note that the exponent on 2 will be even iff the Gödel number being 
calculated is a number for a proof.  



 
 

It should be clear, then, that each basic symbol, wff, and proof is assigned a distinct Gödel 
number. And we can tell from the Gödel number whether it is the number for a basic symbol, 
wff, or a proof. More than that, we can recover which symbol/wff/proof it is a number for. This 
is because each Gödel number is a product of primes, and because of the following: 

Fundamental Theorem of Arithmetic: Any integer >1 is the product of a unique prime 
factorization. 

 
Thus, if we recover which prime factorization yields a Gödel number as its general product, we 
can thereby determine which symbol/wff/proof it is the Gödel number of. The upshot is that the 
wff/proofs of the system are decidable. 
 
 
The Arithmetization of the Proof Relation 
 
Given the decidability of wff and proofs, the (metamathematical) relation “P is a proof in H of 
A” is also decidable. So assuming Church’s Thesis, the following function f is recursive. Where 
P is a proof with Gödel number #P, and A is a wff with Gödel number #A,  
  f(#P) = #A if P is a proof in H of A. 

0 otherwise 
 
Thus by EL, we know that f is strongly represented in the system. That is to say, there is a 
formula ‘PfH(n, m)’ [intuitively, the proof predicate for H] such that: 

(i) ⊢H ┌PfH(#P, #A)┐ if f(#P) = #A, and 
(ii) ⊢H ┌~PfH(#P, #A)┐ if f(#P) ≠ #A. 

 
This means there is an arithmetic relation denoted by ‘PfH(n, m)’ which holds just in case the 
metamathematical relation holds “n codes a proof in H of the wff coded by m.” In this way, there 
is an indication within H for when something is true about H (in particular, about a wff having a 
proof in H). 
 
 
Diagonal or Fixed Point Lemma  
 
FPL: For any formula B(v) in the language of H, with exactly v free, there is a sentence  such 
that ⊢H ┌  B(#) ┐. 

-FPL guarantees there is a Gödel sentence G such that ⊢H ┌G  ~∨x PfH(x, #G)┐. 
 
Proof of FPL 
Define the diagonaliation of a formula B(v) with exactly v free as ┌B(#B(v)) ┐. A 
diagonalization is a sentence which claims that its one-place formula is satisfied by the Gödel 
number for that very formula. Let diag(n) be a function that outputs the Gödel number of the 
diagonalization of B(v) if n is the Gödel number of B(v); undefined otherwise. Intuitively, this 
function is computable; hence CT implies it is recursive. And thus, EL secures that it is strongly 
represented in H, meaning there is a formula D(x, y) such that: 

(i) ⊢H ┌D(m, n)┐ if diag(m) = n, and 
(ii) ⊢H ┌~D(m, n┐ if diag(m) ≠ n. 



 
 

Observe that if diag(m) = n, then ┌D(m, n) ┐ is equivalent to ┌∧y (D(m, y)  y = n) ┐. So given 
condition (i), it is equally true thanks to the logical axioms and axioms for ‘=’ that: 

1. ⊢H ┌∧y (D(m, y)  y = n)┐ if diag(m) = n. 
 
Next, consider the one-place formula ┌∨y (D(x, y)  B(y)) ┐. Call it Abby and assume it has 
Gödel number a. Then, ┌∨y (D(a, y)  B(y)) ┐ is the diagonalization of Abby. For convenience, 
let  be identical to that diagonalization, so that trivially: 

2. ⊢H ┌   ∨y (D(a, y)  B(y))┐ 
 
Now since  is the diagonalization of Abby, we know that: 

3. diag(a) = # 
 
Therefore: 

4. ⊢H ┌∧y (D(a, y)  y = #)┐   [From 1 and 3] 
5. ⊢H ┌   ∨y (y = #  B(y))┐  [From 2 and 4] 
6. ⊢H ┌   B(#)┐    [From 5 and the axioms for ‘=’] 

 

 
The Proof of Incompleteness  
 
Argument that G is not provable. 

(1) ⊢H ┌G  ~∨x PfH(x, #G)┐ [From FPL] 
(2) ⊢H G    [Suppose for reductio] 
(3) ⊢H ┌~∨x PfH(x, #G)┐  [From (1) and (2)] 
(4) ⊢H ┌∨x PfH(x, #G)┐  [From (2) and the arithmetization of the proof relation]  
(5) ⊬H G    [By reductio; (3) and (4) contradict that H is consistent] 

 
Argument that ~G is not provable. 

(6) ⊢H ┌~PfH(n, #G)┐, for any n [From (5) and the arithmetization of the proof relation] 
(7) ⊢H ~G    [Suppose for reductio] 
(8) ⊢H ┌∨x PfH(x, #G)┐  [From (1) and (7)] 
(9) ⊬H ~G    [By reductio; (6) and (8) contradict that H is -consistent]1 

 
Bonus: Argument that G is true. 

(10) N ⊨ ┌G  ~∨x PfH(x, #G)┐ [From (1) assuming N ⊨ H] 
(11) N ⊨ ┌~∨x PfH(x, #G)┐ [From (6) assuming N ⊨ H] 

(12) N ⊨ G    [From (10) and (11)] 
 

 
1 Consistency is weaker than -consistency. If ~G is added as an axiom to H, the resulting system H* is consistent 
(since G is not derivable from H). But H* is -inconsistent, for the derivability claims at (6)-(8) are all true of H*.  

After Gödel, Rosser (1936) showed how to prove incompleteness by assuming consistency only. Briefly: 
FPL yields a sentence R that says “if there is a proof of R, then there is an earlier proof of ~R” (where ‘earlier’ is 
defined with respect to the Gödel numbers of these proofs.) 



 
 

Appendix: Gödel’s Second Incompleteness Theorem 
G2: There is no derivation in H of the consistency sentence (assuming H is a respectable formal 
arithmetic system). Specifically, ⊬H ┌~∨x PfH(x, #)┐, where  is the wff ‘0 = 1’. 
 
Assuming N ⊨ H, ~∨x PfH(x, #) is true in N iff H is consistent, i.e., the truth of ~∨x PfH(x, #) 
indicates the consistency of H. And so, G2 means you could derive this consistency-indicator in 
H only if H is inconsistent. Put a different way, if H is respectable, there is no means within H to 
derive the consistency sentence. 
 
From another angle, neither the consistency sentence nor its negation is provable in H, assuming 
H is respectable…so the consistency sentence is another point at which H is incomplete. 
 
The Basic Argument 

(13) ⊢H ┌~∨x PfH(x, #) ┐    [Suppose for reductio] 

(14) ⊢H ┌~∨x PfH(x, #)  ~∨x PfH(x, #G)┐ [Lemma] 
(15) ⊢H ┌~∨x PfH(x, #G) ┐    [From (13) and (14)] 
(16) ⊢H G      [From (1) and (15)] 
(17) ⊬H ┌~∨x PfH(x, #)┐    [By reductio; contradiction at (5) and (16)]  

 
The proof of the Lemma at (14) is omitted here. But basically, you can prove inside H that G is 
not provable in H…assuming that H is consistent (which is what the antecedent in (14) 
effectively says). 
 
 


