Naive Sets and Russell's Paradox

I.1 Sets

Here is how philosophers and mathematicians think of sets. If you
have some things—people, cars, trees, numbers, countries, any sort
of things—then there is also a further thing, the set containing those
things.

So, if we start with Margaret Thatcher, Tony Blair,and Albert Einstein,
for example, we then have the set containing these three, namely:
{Margaret Thatcher, Tony Blair, Albert Einstein}. Or if we start with
London, Jane Austen, the number 3, and Iceland, we then have:
{London, Jane Austen, 3, Iceland}.

Similarly, if we start with all the cars in London, we have the set
{x: xis a carin London}. (Read this as: the set of xs such that x is a car
in London.) Or if we start with all the countries in Europe, we then
have {x: xis a country in Europe}.

Note how we can specify a set by listing all its members, as in the
first two examples above, or by specifying a property that picks outall
its members, as in the second two.

In the former examples, we are using the extensive notation for a set.
We name the set by naming the members in turn inside squiggly
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brackets. {Margaret Thatcher, Tony Blair, Albert Einstein}. {London,
Jane Austen, 3, Iceland}.

In the latter examples we are using the intensive notation for a set. We
name the set by specifying a feature common to all its members inside
squiggly brackets. {x: x is a car in London}. {x: x is a country in
Europe}.

Sometimes we can name a set in both ways: {John, Paul, George,
Ringo}, {x: x is a Beatle}. Note that these aren’t two different sets, just
two different ways of naming the same set.

1.2 Membership and the Axiom
of Extensionality

We say that a set contains its members, and the members belong to the set.
If S is a set and m belongs to it, we write ‘m € S. € is the membership
relation.

The nature of a set depends on nothing more than its members. If
A and B are sets, then they are the same set if and only if they have
the same members. More formally we can write:

For any sets A, B: A = B iff* (for any x)(x € A iff x € B).

This principleis known as the axiom of extensionality. It makes it explicit
when two sets are the same—just in case they have the same mem-
bers. At the end of the chapter we will meet another axiom—the
axiom of comprehension—that makes it explicit what sets there are in
the first place.

Together these two axioms constitute naive set theory.

(An ‘axiom’ is a basic assumption of a theory. A theory can
be viewed as all the statements that follow by logic from its

! Philosophers and mathematicians use ‘iff’ as a handy abbreviation for ‘if and
only if".
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BoxI The Reality of Sets

Do sets really exist? Do we really want to allow that in addition to Margaret
Thatcher, Tony Blair,and Albert Einstein, there is an extra thing, the set {Mar-
garet Thatcher, Tony Blair, Albert Einstein}? Where is this extra thing located?
Does it make any difference to anything else? Certainly some philosophers
deny the existence of sets, and view them as nothing but useful fictions
made up by mathematicians. However, we can put such doubts to one side
for present purposes. Think of this chapter as exploring the properties that
sets would have, if they existed. Even if you are sceptical about sets, you will

do well to understand what you are objecting to. Know thine enemy.

N /

axioms. We shall look at axioms and theories in more detail in
Chapter12.)

1.3 Unions, Intersections, and the Empty Set

The union of sets A and B is the set which contains everything that
belongs to either A or B or both. We write A U B.

So {Margaret Thatcher, Tony Blair, Madonna} U {Jane Austen, Tony
Blair, Iceland} = {Margaret Thatcher, Tony Blair, Madonna, Jane
Austen, Iceland}.

The intersection of sets A and B is the set which contains everything
that belongs to both A and B. We write A N B.

So {Margaret Thatcher, Tony Blair, Madonna} N {Jane Austen, Tony
Blair, Iceland} = {Tony Blair}.

There is also an empty set, a set which exists but has no members. We
write {}, or @.
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1.4 Subsets

If A is a set, then B is a subset of A if and only if all the members of B are
also members of A. We write B C A.

So {Margaret Thatcher, Tony Blair} and {Tony Blair, Jane Austen,
Iceland} are both subsets of {Margaret Thatcher, Tony Blair, Madonna,
Jane Austen, Iceland}.

The ‘singleton set’ {Margaret Thatcher} is also a subset of this set.
This is the set whose only member is Margaret Thatcher. Be careful
not to muddle up this singleton subset with Margaret Thatcher her-
self. Margaret Thatcher is a person, not a set.

Note that every set is a subset of itself. (We specified above that
B is a subset of A if all the members of B are also members of A.
Well, given any set A, all the members of A are certainly members
of A)

If Bis a subset of A other than A itself we say it is a proper subset, and
write B C A.

The empty set is a subset of every set. (This might seem a bit arbi-
trary. Isevery member of the empty set also a member of every other
set, in line with the above definition of a subset? Since the empty set
doesn’t have any members, it is not obvious whether this is true.
Still, let us agree to understand the definition of a subset in this way.
Things work out more neatly if we count the empty set as a subset of
every set.)

1.5 Members versus Subsets
As we saw above, being a member is not the same as being a subset.
Subsets of A are extra sets, each of which contain some members of A,

and as such are not normally members of A themselves.
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Even so, in certain cases a subset of a set can also be a member of
that set.

This is possible because sets can have other sets as their members.
Remember that sets are things in their own right, and that any things
can enter into scts. So sets, along with ordinary objects, can be mem-
bers of other sets.

To illustrate how one set can be a member of another, suppose we
start with the people Elvis Presley and John Lennon, plus the sets
{Margaret Thatcher, Tony Blair} and {Albert Einstein, Stephen Hawk-
ing}. Then there will be another set which has just those things as
members, namely:

{Elvis Presley, John Lennon, {Margaret Thatcher, Tony Blair}, {Albert
Einstein, Stephen Hawking}}.

Note how this set has both people and sets as members.
We can now see how it is possible for a subset of a set to be a mem-
ber of that same set. For example, consider this set A:

{Ringo Starr; Paul McCartney, {Margaret Thatcher, Tony Blair}, {Ringo Starr;
Paul McCartney}}.

The set {Ringo Starr, Paul McCartney} is a member of A—namely, the
last-named member. Butitis also a subset of A, because both its mem-
bers are members of the set A—namely, the first two members of A.

Note that {Ringo Starr, Paul McCartney} is notamember of A because
it is a subset of A. For it to be a subset, all that is required is that its
members are members of A. It is a further fact that it is itself a member
of A.

To drive the point home, consider this set B:

{Ringo Starr, Paul McCartney, {Margaret Thatcher, Tony Blair}}.
Now {Ringo Starr, Paul McCartney} is a subset of B, but not a mem-

ber of B.
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1.6 Power Sets

The set {Ann, Bob} has 4 subsets:

@, {Ann}, {Bob}, {Ann, Bob}.

The set {Ann, Bob, Clio} has 8 subsets:

@, {Ann}, {Bob}, {Clio}, {Ann, Bob}, {Ann, Clio}, {Bob, Clio}, {Ann, Bob, Clio}.
The set {Ann, Bob, Clio, Dai} has 16 subsets:

@, {Ann}, {Bob}, {Clio}, {Dai}, {Ann, Bob}, {Ann, Clio}, {Ann, Dai}, {Bob,
Clio}, {Bob, Dai}, {Clio, Dai}, {Ann ,Bob , Clio}, {Ann, Bob, Dai}, {Ann, Clio,
Dai}, {Bob Clio, Dai}, {Ann, Bob, Clio, Dai}.

In general, any set with n members has 2" subsets.

To see why this should be so, imagine that you place the n members
of some set A in a row, and that you then form a subset by going
though these n members in turn deciding whether or not to include
each in the subset. So you have two choices for the first member—in
or out. And for each of these you have two choices for the second
member—in or out. And for each of these four pairs of initial choices
you have two choices for the third member...

So there are 2" ways of forming a subset B. For each of the n mem-
bers of the original set, you have a two-way yes—no option of whether
to include it in your subset. (See Box 2.)

The set of all subsets of a set is called its power set. So the power set
of a set with n members always has 2" members.

So, as above, the power set of {Ann, Bob, Clio} is the 2>-membered
set {@,{Ann},{Bob}, {Clio},{Ann, Bob},{Ann, Clio}, {Bob, Clio}, {Ann,
Bob, Clio}}.

(Note how none of this would come out so nicely if we didn’t count
the empty set @ as a subset of every set.)

8 SETS AND NUMBERS



Box2 The Size of Power Sets

ways of forming S.

! !
Ism; in S?: Is m, in S?:

2 options

Imagine that m,m,,...,m_are the n members of our original set A, and that
we want to form a subset S of this set. We then have n successive yes—no
choices of whether to include these members in S, giving us altogether 2"

| 2Moptions

1.7 The Axiom of Comprehension

The ‘axiom of extensionality’ told us when two sets are the same—

they have just the same members.

But how many sets are there in the first place? So far we have been

assuming that, for any condition, there will be a set of things satisfying

that condition.

The assumption that there exists a set for every condition can be

made explicit as the axiom of comprehension:

For any condition C, there exists a set A such that (for any x)(x € A iff x

satisfies C).
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You might be wondering why I am being so pedantic as to make this
assumption explicit. Is it not obvious that there is a set of things
satisfying any given condition? For example, if the condition is being
red, then we have the set {x: x is red}; if the condition is being a Euro-
pean country, then we have the set {x: x is a European country}; if the
condition is being Margaret Thatcher or Tony Blair, then we have the set
{Margaret Thatcher, Tony Blair}; and so on. What could be more
obvious?

However, far from being obvious, the axiom of comprehension
cannot possibly be true. The idea that there is a set for every condition
quickly leads to contradiction.

1.8 Russell’s Set

Given that sets can themselves be members of sets, there is nothing to
stop some sets being members of themselves. The set of all sets with
more than one member is a member of itself, for instance—for this set
will certainly have more than one member, and so it will be a member
ofitself.

The set of all things which are not buses, say, will similarly be a member
of itself—since it is a set and therefore not a bus.

Many other sets, of course, will not be members of themselves. For
example, the set of all sets with only one member will not be a member of
itself—for this set will have many members and so not belong to itself.
Or again, the set of all buses will not be a member of itself—for this will
be a set and not a bus and so again not belong to itself.

Now consider the condition: is not a member of itself.

According to the axiom of comprehension, there must be a set
corresponding to this condition, namely, R = {x: x not-€ x}. R will
contain precisely those things that are not members of themselves.
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However, as Bertrand Russell first showed in 1901, the assumption
that R exists generates an inconsistency. For we can prove both that R
is amember of itself and that it is not.

1.9 Russell’s Paradox

First let us prove that R is a member of itself.

(a) Assume R is not a member of itself.

(b) But then, since R contains all sets that are not members of themselves,
it is a member of itself.

(c) So we have contradicted our assumption (a).

(d) So by reductio ad aburdum’ we can conclude that (a) is false and R is
a member of itself.

(A proof ‘by reductio ad absurdum’ is where you conclude that
some temporary assumption made for the sake of the argument—
—here (a)-must be false since its truth would imply a contradic-
tion. ‘Reductio ad absurdum’ is simply Latin for ‘reduction to
absurdity’.)

Now we can similarly prove that R is not a member of itself.

(") Assume R is a member of itself.

(b") But then, since R contains only sets that are not members of them-
selves, it is not a member of itself.

(c") So we have contradicted our assumption (a”).

(d") So by reductio’ we can conclude that (a”) is false and R is not a
member of itself.

We have now proved both (d) that R is a member of itself and (d ") that
R is not a member of itself. Something has gone badly wrong. This is
Russell’s paradox.
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(Just to keep things straight, don’t confuse the final contradiction
between the conclusions (d) and (d”) with the earlier contradictions
encountered in the course of proving (d) and (d ). The latter were merely
consequences of the temporary assumptions (a) and (a”) respectively,
and were used to conclude that (a) and (a”) must be false—since they
led to contradiction. But the contradiction between (d) and (d ") isn’ta
result of some temporary assumption made for the sake of the argu-
ment. Rather it is forced on us by the existence of R, which in turn
follows from the axiom of comprehension.)

1.10 Barbers and Sets

It will be helpful to compare Russell’s paradox with the ‘paradox of
the barber’.

You tellme that thereis abarber who shaves alland only those who do not
shave themselves. [ wonder whether he shaves himself. And so I reason:

(a) Assume he does not shave himself.

(b) But then he does shave himself (he shaves all those who do not shave
themselves. ..).

(c) So we have contradicted our assumption (a).

(d) So by reductio’ we conclude that he does shave himself.

And:

(a") Assume he does shave himself.

(b") But then he does not shave himself (he shaves only those who do
not shave themselves...).

(c) So we have contradicted our assumption (a").

(d") So by reductio’ we conclude that he does not shave himself.

Your claim about the barber has led to a contradiction. Butin this case
itis clear enough how to react. The contradiction shows that there can
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be no such barber. You are full of nonsense. Your claim has been
reduced to absurdity. Despite what you say, there can’t be a barber
who shaves all and only those who do not shave themselves.

Now, at first pass, Russell’s paradox calls for the same response.
There can’t be a set of all things which are not members of them-
selves, for the assumption that such a set exists leads to a contradic-
tion. But the trouble in this case is that we can’t just leave it at that. For
the assumption that there is a set of all things which are not members
of themselves isn’t just some spurious claim made in idle conversa-
tion, like your story about the barber. It is an inescapable conse-
quence of what looked like an obvious assumption about sets,
namely, the assumption that there is a set corresponding to every
condition. If we are to reject the set of all things which are not mem-
bers of themselves, we have no choice but to give up this axiom of
comprehension.

Russell’s paradox arises because sets are things and so the axiom of
comprehension—there is a set corresponding to every condition on
things—also applies to conditions on sets. But the set we get from a
condition on sets will depend on what sets are available as candidate
members to start with—which is precisely what the axiom of com-
prehensions was supposed to tell us. What we have seen is that this
implicit circularity is not only worrisome but vicious in the sense that
it gencrates contradictions.

.11 Alternatives to Naive Set Theory

It is common to refer to the axioms of extensionality and comprehen-
sion as together comprising ‘naive set theory’. Certainly these two
assumptions seem to capture the intuitive notion of a set. Sets are
defined by their members (extensionality) and there is a set for any
characterizable plurality of things (comprehension).
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But Russell’s paradox shows that naive set theory is too naive.
In particular, it shows that naive set theory contradicts itself.
Some philosophers take this to be further evidence against the
reality of sets. But most mathematicians and logicians respond
by secking to replace the intuitive notion of a set by a more
sophisticated understanding which is free of inconsistency. This
improved understanding must somehow avoid positing a set of all
things that are not members of themselves, otherwise inconsist-
ency will inevitably return. So modern set theories all modify the
axiom of comprehension in one way or another so as to limit the
range of admissible sets. We needn’t go into details. From now on
I shall simply assume that talk of sets has somehow been made
consistent.

Box3 Russell’s Bombshell

In 1902, just as he was putting the finishing touches to the second volume
of his Basic Laws of Arithmetic, the great German logician Gottlob Frege
received a letter from Bertrand Russell about the set of all things that are
not members of themselves. In an Appendix to the volume Frege said
‘A scientist can hardly meet with anything more undesirable than to have
the foundations give way just as the work is finished. | was put in this posi-
tion by a letter from Mr Bertrand Russell when the work was nearly
through the press! In fact Frege himself never found a satisfactory way of
dealing with Russell's paradox. But subsequent mathematicians and logi-
cians, including Russell himself, have developed a number of different ways

of avoiding it.

J
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FURTHER READING

Eric Steinhart’s More Precisely: The Math You Need To Do Philosophy (Broadview
Press 2009) is a useful introductory complement to the present book. The first
two chapters deal with basic set theory in rather more detail than I have.

Michael Potter’s Set Theory and its Philosophy (Oxford University Press 2004) is an
advanced philosophical introduction to the material covered in the first three
chapters of this book.

Mary Tiles’ Philosophy of Set Theory; An Historical Introduction to Cantor’s Paradise
(Dover Books 2004) covers much of the same ground.

EXERCISES

1. What is the union of the following pairs of sets?

(a) {Abe, Bertha}, {Bertha, Carl}

b){2,5,7,11,13}, {1, 5, 11,13}

¢) {x: xis a child aged y—12}, {x: x is a child aged 1015}

d) {France, Germany, Italy}, {Germany, Italy}

e) {France, Germany, Italy}, {India, China}

f) {x: lives in Germany}, {x: x lives in Europe}

(g) {x: x lives in China}, {x: lives in Europe}

(h) {x: x weighs morc than 10 kilos}, {x: x weighs more than 7 kilos}

(
(
(
(

2. What is the intersection of each of the above pairs of sets?

3. List all the subsets of the following sets.

(a) {Abe, Bertha}
(b){7.8, 9}

4. Give the power sets of the following sets.

(@ {17}

(b) {London, Manchester, Birmingham}
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5. Consider the set {1, 2, 3, 7, 8}

Which of the following items are (a) members, (b) subsets, or (c) neither?
2,{7.8} {23}, {}. 3, {1,2,3,{78}}

6. Consider the set {1, 2, 3, {7, 8}, {2, 3}}-

Which of the following items are (a) members, (b) subsets, or (c) neither?
2,{7,8},{2,3},{}.3. {1, 2,3, {. 8}}

7. (A): “This sentence is false.’

Show carefully that this statement leads to a contradiction. (Hint: first
assume that (A) is true, then assume that it is not true.)
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