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BASICS OF QUANTIFICATIONAL META/LOGIC 
 
 
0. Unfamiliar features of Q  
 
Wff in Q 
Hunter’s Q is unlike the quantificational logic you see in undergraduate logic texts. For instance, 
you get a new wff by adding “∧v” or “∨v ” to any pre-existing wff A. That’s so, even if the 
variable v doesn’t occur in A, or even if a quantifier binding v already occurs in A. Thus, the 
following are some wff of Q which you might find surprising. 
 
  ∧x഻ F഻x഻഻  ∧x഻∧x഻∧x഻ F഻x഻  
  ∧x഻ F഻a഻  ∨x഻∧x഻ F഻x഻ 
  ∧x഻ p഻   ~∨x഻∧x഻ F഻x഻ 
 
This is, in fact, entirely standard in mathematical logic; it is seen in Principia Mathematica for 
example. But it implies other things which might be unfamiliar, e.g., when we get to defining 
truth. In logic textbooks, truth/falsity apply to sentences (a.k.a., closed wff…having no free 
variables).1 But in Q, some open wff are “true” and some are “false” too. Consequently, there are 
“logical validities” in Q with free variables; such wff are also among the “axioms” and 
“theorems” in the formal system QS.  
 
I’m not sure what the advantages of this are, but never mind. Note, however, that the 
metatheorems end up stating something stronger than they would otherwise. E.g., completeness 
for QS implies that, since you can derive wff with free variables in QS as “theorems,” these are 
“logically valid” in the present sense. 
 
UG and UI in QS 
Since open wff can be “true” in Q, universal generalization (UG) must be restricted in QS. We 
do not want [QS5] (= the schema for UG) to license the following False Axiom: 
 
 (FA) F഻x഻  ∧x഻ F഻x഻ 
 
Thus we stipulate that axioms from [QS5] must have no free variable in the antecedent. Now it is 
typical in natural deduction systems for UG to have restrictions to avoid overgeneralization. But 
the restriction in QS owes to the open wff among the axioms and theorems.  
 
Another unfamiliar feature of QS might be that universal instantiation (UI) has restrictions. We 
shouldn’t be able to generate from [QS4] (= the schema for UI) the following False Axiom 2: 

 
(FA2) ∧xʹ~∧x഻഻ F഻x഻x഻഻  ~∧x഻഻ F഻x഻഻x഻഻ 
 

This is false on some interpretations. E.g., if ‘F഻**’ is identity, then (FA2) says that if everything 
is non-identical to something, then not everything is self-identical.  

 
1 Take heed that a closed wff in Hunter is not necessarily the “closure” of a wff, as defined on p.139. Ugh. 



Terms that are “free for” a variable. 
Thus, we get a restriction on [QS4]: When instantiating a quantified variable v, use a term that is 
“free for” v. Basically, when removing the v-quantifier but before replacing v, you first notice 
that v is free…and you must replace it with a term t that remains “free” after the replacement. 
This means that any free-variable component of t should not become bound after the 
replacement. (I will elaborate in class.) 
 
 
1. Semantic Vocabulary for Q 
 
In Q, we cannot just assign truth-values to all non-truth-functional wff, since it will suggest 
possibilities that are not possible. Thus, ‘∧x F഻x഻’ and ‘F഻a഻’ are both non-truth functional, but 
you should not be able to assign ‘true’ to the former and ‘false’ to the latter. Thus, we adopt a 
more nuanced way to interpret a language with subject-predicate structure and quantifiers: 
 
An interpretation I of the language Q specifies a non-empty set D, the domain, and assigns: 
 

1.  ‘true’ or ‘false’ (but not both) to each propositional symbol of Q.  
2. some member of D to each constant of Q. 
3. some total function on D to each functor of Q.2 
4. a set of n-tuples of members in D to each n-place predicate of Q (known as the 

extension of the predicate).3 
 

The truth-functional connectives have their usual meaning. 
 
But, beyond the propositional symbols, we need further measures to determine which wff are 
true on I. The standard way to do this (following Tarski) is to determine which wff are 
“satisfied” on I, and then define truth/falsity with respect to that. 
 
Yet first, we must define a denotation-function for the terms of Q on I, relative to a denumerable 
ordered set of elements from D. Let s be such a sequence ⟨e1, e2, e3…⟩.4 Also, if xʹ, xʹʹ, xʹʹʹ… are 
the variables of Q, assume they are ordered by how many primes follow ‘x’. Given a term t of Q, 
the denotation-function t*s yields an output as per the following rules: 
 

 If t is the kth variable in the enumeration, then t*s = the kth element in s. 
 If t is a constant, then t*s = the element of D assigned to t by I. 
 If t is a functor, then t*s = the function on D assigned to t by I. 

 
 

 
2 Partial functions on D can still be expressed by means of predicates (e.g., “x is the square root of y”). But since 
every term must refer to an object in classical logic, partial functions on D cannot be expressed by functors. 
3 Actually, if ‘F’ is a one-place predicate, then its extension consists in members of D, rather than n-tuples of such. 
Accordingly, in clause 2 of the definition of ‘satisfaction’, a wff ‘Ft’ featuring a one-place predicate ‘F’ is satisfied 
iff t*s is a member of the extension for F. But following Hunter, I gloss these subtleties above. 
4 Annoyingly, Hunter refers to the elements of the sequence as the “terms” of the sequence. This makes ‘term’ 
equivocal between a linguistic item of Q and the denotation of such items. I reserve ‘term’ for the linguistic items. 



We can give an inductive definition that a sequence s satisfies a wff A on I iff: 
 
 Basis clauses 

1. A is a propositional symbol and I assigns ‘true’ to A; or 
2. A is an atomic wff Ft1…tn, where F is an n-place predicate and t1…tn are terms, and 

⟨t1*s …tn*s ⟩ is a member of the extension assigned to the predicate by I; or 
 

Inductive clauses 
3. A is a wff ~B and s does not satisfy B on I; or 
4. A is a wff B  C and either s does not satisfy B or S satisfies C on I; or 
5. A is a wff ∧v B and every sequence satisfies B on I; or 
6. A is a wff ∨v B and some sequence satisfies B on I. 

 
The definition secures that, given an interpretation I, a wff of Q is either satisfied by every 
sequence, or satisfied by none. Accordingly, truth and falsity are defined thus: 
 

 A wff of Q is true on I iff it is satisfied on I by every sequence. 
 A wff of Q is false on I iff it is satisfied on I by no sequence. 

 
NOTE: Some open wff are neither true nor false, e.g. F഻x഻. Even so, some open wff are true, e.g.,  
F഻x഻  F഻x഻ and ∧x഻഻ F഻x഻഻  F഻x഻ (also, the negations of these are false).  
 
With the definitions of true/false, we can then define other semantic notions for Q as one might 
expect: 
 
An interpretation I is a model of a (non-empty) set of wffs  of the language Q iff every member 
of  is true for I. 
 
A wff  of Q is entailed by or is a semantic consequence of a (possibly empty) set  iff there is 
no model for  where  is false. This is written as ‘⊨Q’, although I drop the subscript on the 
double turnstile (so long as it is clear that the language in question is Q). 
 
is logically valid in Q iff  is true on every interpretation, written as ‘⊨ ’. 
 
A set of wffs  of Q is satisfiable iff there is a model for . Otherwise, it is unsatisfiable. 
 
 
 
 
 
 
 
 
 
 
 



2. Syntactic Vocabulary for QS 
The syntactic vocabulary for QS is entirely parallel to that for PS. 
 
A derivation in QS of the wff  from the (possibly empty) set of wff  is a finite, nonempty 
sequence of wff φ0, φ1, . . . , φn, ending in , such that for every wff φi in the sequence, either: 

i. φi is an axiom of QS, or 
ii. φi is a member of Γ, or 
iii. φi results from a single application of modus ponens to a pair of earlier wff in the  
     sequence (or: φi is an “immediate consequence” of earlier wff). 


 is derivable or is a syntactic consequence of  in QS, iff there is a derivation in QS of  from 
. This is written as ‘⊢QS  ’, although I drop the subscript on the single turnstile (so long as it is 
clear that the formal system in question is QS). 
 
α is a theorem iff α is derivable from the empty set in QS, written as ‘⊢ ’. (Note that every 
axiom of QS is also a theorem.)  
 
 is p-consistent (“proof-theoretically consistent”) in QS iff there is no  such that both ⊢  
and ⊢ ~. Otherwise, it is p-inconsistent. 


