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SET THEORY PRIMER 
1. Basics 
 
{x | Cx} is the set of all and only those things that satisfy condition C. 
‘x ∈ y’ means that x is an element (a.k.a., a member) of y. (Note that x could itself be a set.) 
‘x y’ means that x is not an element of y.  
∅ or {} is the empty set, where for any x, x  ∅. (Alternatively, ∅ = {x | x  x}.) 
{x} is the singleton of x, i.e., the set whose only member is x. 
 
Let A and B be sets. Then: 
‘A ⊆ B’ means that A is a subset of B and that B is a superset of A—every element of A is an 
element of B.  

I.e., for any x, if x  A, then x  B. (This does not mean that A ∈ B.) 
The empty set is a subset of every set. (Do you see why?) 

 ‘A ⊂ B’ means that A is a proper subset of B; A is a subset of B but A  B. 
 
A B is the union of A and B: It is the set of all objects that belong to either A or B. 
 I.e., A B = {x | x  A or x  B}. 
A  B is the intersection of A and B: It is the set of all objects which belong to both A and B. 
 I.e., A B = {x | x  A and x  B}. 

A and B are called disjoint when their intersection is empty. 
PA is the power set of A: It is the set of all subsets of A.  

I.e., PA = {x | x ⊆ A}. 
 

B – A or B \ A is the set difference of B and A: It is the set {x  B | x  A}. The order of B and 
A matters, since {x  A | x  B} is a different set (except when A = B). The set difference of B 
and A is also known as the relative complement of A in B—or if B is clear from context, we 
might just write ‘\ A’ or ‘Ā’ and speak simply of the “complement” of A.1  
 
⟨a, b⟩ is an ordered pair. Unlike {a, b}, the order of the elements matters since ⟨a, b⟩  ⟨b, a⟩ 
(except when a = b).  

⟨a, b⟩ is usually defined as the set: {{a}, {a, b}}.  
By extension, the ordered triple ⟨a, b, c⟩ is the ordered pair ⟨⟨a, b⟩, c⟩; the ordered quadruple  
⟨a, b, c, d⟩ is the ordered pair ⟨⟨a, b, c⟩, d⟩ = ⟨⟨⟨a, b⟩, c⟩, d⟩. And so on for any n-tuple, a.k.a. 
sequence. (Technically, an “n-tuple” can be a zero- or single-membered set, but normally the 
focus is on cases where n  2.) 
 
{⟨x1, …, xn⟩ | Cx1, …, xn} is the set of n-tuples that satisfy condition C. 
A × B is the Cartesian product of A and B: It is the set of all ordered pairs whose first member 
is in A and whose second member is in B. 

I.e., A × B = {⟨x, y⟩ | x ∈ A and y ∈ B} 
For n  2, An is the Cartesian power of A; it is the set of n-tuples whose members are in A.  

I.e., An = {⟨x1, …, xn⟩  | x1 ∈ A and…and xn ∈ A}. 
 

1 But normally, Ā is not identified as the absolute complement of A, i.e., it is not identified with the set {x | x  A}, 
since that would create a Russell-like paradox. 



 

Naïve Set Theory 
Axiom of Extensionality: A = B iff: for any x, x  A iff x  B. 
 -This secures that {3, 4} = {4, 3}, and that {3, 3} = {3}. 
Axiom of Comprehension: For any condition C, there is an A such that x  A iff x satisfies C.2  
 -The Russell set R shows that this “axiom” is false, where R = {x | x  x} 
 
Zermelo-Frankel (ZF) Set Theory includes Extensionality, but instead of Comprehension… 
Axiom of Separation: If A is a set, then so is any subset of A.  
 I.e. If there is a set A, then there is a set {x  A | Cx}, where C is any condition. 

-This does not allow the Russell set. At most, it allows {x  A | x  x} which will be A 
itself (assuming that no x violates the Axiom of Regularity; see below). 

Pair Axiom: For any x and y, there is a set {x, y}. (If x = y, then it will just be {x}.) 
Union Axiom: If B = {A1…An}, then the general union of B exists: ⋃B = A1 ... An. 
Axiom of Infinity: There is a set ℕ = {x | x is a natural number}. (See below for more.) 
Powerset Axiom: If A is a set, then so is PA. 
Axiom of Regularity/Foundation: If A  ∅, then for some x  A, there is no y is such that y  x 
and y  A.3 
Axiom of Replacement: Suppose that for every x  A, there is a unique y such that Cxy. Then 
there is a set B of exactly these y. 
Axiom of Choice: (ZF is often called “ZFC” due to the Choice Axiom.) Given a set of sets  
B = {A1…An}, there is a function g(x) such that for each Ak  B, g(Ak) = y, where y  Ak. 
(Basically, g(x) “chooses” an element from each set in B.) 
  
 
2. Set Theory and Number Theory 
 
The set of natural numbers ℕ = {0, 1, 2, 3…} 
The set of positive integers ℙ = ℕ \ {0} = {1, 2, 3…} 
The set of integers ℤ = {…-3, -2, -1, 0, 1, 2, 3, …} = the union of ℕ with its additive inverses. 
The set of rationals ℚ = {x | there is an m  ℤ and an n  ℤ such that x = m/n} 
The set of reals ℝ = the union of ℚ with the set of irrationals.4 
 
Zermelo’s definition of ℕ: 

1. Let ∅ define 0. 
2. If a set A defines n, then {A} defines n+1. 

-Thus, {∅} defines 1, {{∅}} defines 2, {{{∅}}} defines 3, etc. 
 

 
2 Comprehension is not really an axiom but an axiom-schema: It implies a distinct axiom for each condition C that 
might occur in the schema. Ditto for the Separation “axiom” and the Replacement “axiom” in ZF. 
3 Regularity is often phrased instead as “each set A is disjoint with at least one of its own elements.” But the 
drawback is that ‘disjoint’ applies only to sets; cf. Patrick Suppes (1971), Axiomatic Set Theory, Dover, p. 54. This 
means that “impure” sets like {Socrates} are ruled out, for Socrates is not “disjoint” with {Socrates}. Even so, 
ZF(C) is now standardly seen as concerned just with pure sets (∅ and sets that contain only sets). Yet in metalogic, 
we need sets of formulae to prove metatheorems. So I prefer Suppes’ version of the Regularity Axiom, above. 
4 How to define the set of irrationals? Dedekind pioneered a partial definition using “cuts;” see Richard Dedekind, 
“Continuity and the Irrational Numbers,” in Essays on the Theory of Numbers, New York: Dover, 1963. pp. 1-27. 



 

Von Neumann’s definition of ℕ: 
1. Let ∅ define 0. 
2. If a set A defines n, then A  {A} defines n+1. 

-Thus, {∅} defines 1, {∅, {∅}} defines 2, {∅, {∅}, {∅, {∅}}} defines 3, etc. 
 
Von Neumann’s definition is equivalent to: Any natural number is the set of its predecessors. 
This claim can be extended to define transfinite numbers (which gives von Neumann’s definition 
an advantage over Zermelo’s).   
 
 
3. Functions and Relations 
 
Intuitively, a function F is an operation or rule which takes an element as input and associates it 
with an output or value such that well-definedness is satisfied: Each input is associated with a 
unique output. The set of inputs is the domain of F, written ‘domF’, whereas the set of outputs is 
its range, written ‘ranF’. Take heed that a single “input” or “output” can be an n-tuple. Functions 
with n-tuple inputs are often our concern, and in such cases, we distinguish an input from its 
members by calling the latter the arguments of the function. 
 
Notation: If d is an input to a function F, then ‘F(d)’ denotes the output of F on that input; e.g., if 
the successor function is S(x) = x + 1, then ‘S(2)’ denotes 3. Such a term can then indicate the 
input in further cases: Where F(x) = x2, F(S(2)) = 9, F(F(S(2))) = 81, etc. 
 
Mathematically, a function is defined not by specifying an operation or rule, but rather just by a 
set of input-output pairs of the form “⟨input, output⟩” 

E.g., the squaring function on ℤ is {…⟨-2, 4⟩, ⟨-1, 1⟩, ⟨0, 0⟩, ⟨1, 1⟩, ⟨2, 4⟩…}, and the 
addition function on ℙ is {⟨⟨1, 1⟩, 2⟩, ⟨⟨1, 2⟩, 3⟩…⟨⟨2, 1⟩, 3⟩, ⟨⟨2, 2⟩, 4⟩…}. 

Accordingly, functions F and G are identical iff they have the same outputs on the same inputs 
(even if the operations/rules that characterize F vs. G are very different). 
 
A function F on A is such that domF  A and ranF  A.5 In cases where domF = A, we say it is 
total function on A (e.g., the successor function on ℕ). But if domF ⸦ A, then F is a partial 
function on A (e.g., the anti-successor function on ℕ). 
 
If domF = A and ranF  B, we are able to say that F maps A into B, written ‘F: A  B’. In cases 
where ranF = B, we can say more precisely that F maps A onto B. (Note that a function “on A” 
might not be onto A, e.g., the squaring function on ℤ. This may be why ‘over A’ is sometimes 
used instead of ‘on A’.) 
 
A function F is one-to-one iff it never yields the same output on two different inputs. 
 I.e., F is one-to-one iff, for all x and y, F(x) = F(y) only if x = y. (This is the converse of  

well-definedness.) 
 

 
5 Actually, mathematicians use the expression ‘on A’ more liberally. Consider that addition “on ℙ” does not have 
(any subset of) ℙ as a domain, but rather ℙ × ℙ. My guess is that we can say a function is “on A” anytime the 
function just relates members of A or members of some Cartesian power of A. (Ditto for relations.) 



 

= 

If F maps A onto B and is one-to-one, then there is a 1-1 correspondence between A and B, 
sometimes written as ‘A ⋍ B’.6 This will be important in the next section. 
 
A binary relation on sets A and B is a set of ordered pairs ⟨x, y⟩ where x  A and y  B. We 
speak here too of A as the domain and B as the range. Indeed, all functions are binary relations, 
but not vice-versa: Some binary relations pair an element of the domain with more than one 
member of the range. E.g., the relation x < y on ℤ pairs any integer to infinitely many other 
integers. In the case of x = 1, the relation contains the pairs ⟨1, 2⟩, ⟨1, 3⟩, ⟨1, 4⟩, etc. 
 
Generalizing, if A1, …, An are sets, then an n-ary relation among A1…An is a set of n-tuples 
⟨x1, …, xn⟩ such that x1 ∈ A1 and…and xn ∈ An.  
 
Some sets—including many functions and relations—are characterized by a rule or operation 
that is an effective method, i.e., an algorithm. Roughly, this means that there is a finite series of 
well-defined, computer-implementable (or “mechanical”) instructions, which can be completed 
in a finite amount of time, for identifying members of the set. Iff some algorithm correctly 
identifies that x  A, for any x  A, then A is semi-decidable or effectively enumerable. 
Whereas, iff some algorithm does this and correctly identifies that y  A, for any y  A, then A 
is decidable or computable. (N.B., Any decidable set is also “semi-decidable.”) 
 
Church’s Thesis (CT), sometimes known as Turing’s Thesis, says that any intuitively 
computable set is computable by a Turing Machine. CT is not believed to admit of strict 
mathematical proof, but it is useful in the attempt to make more precise our intuitive notions of 
“algorithm,” “decidable,” “computable,” etc. 
 
 
4. Sizes of Sets 
 
The cardinality of A (or the cardinal number of A), written ‘|A|’ or ‘A’, indicates how many 
elements the set has.  
 
|A| = |B| iff there is a 1-1 correspondence between them. We then say that the sets are 
equinumerous.  
|A| > |B| iff, first, there is a 1-1 correspondence between B and a proper subset of A, and second, 
there is no 1-1 correspondence between B and A. 
 
A set A is finite iff there is no 1-1 correspondence between A and any proper subset of A. 
A set A is infinite iff there is a 1-1 correspondence between A and some proper subset of A. 

-The 1-1 correspondence between ℕ and its even members shows that ℕ is infinite. 
For any finite set A, |A| is a natural number; whereas, |ℕ| = ℵ0 (pronounced “aleph-nought”); this 
is the first transfinite cardinal number. 
 
 
 

 
6 Lots of people use the terms ‘injection’, ‘surjection’, and ‘bijection’ in this area, but I find that terminology 
confusing for more than one reason. I try to avoid it. 



 

A set is denumerable or countably infinite iff it’s equinumerous with ℕ.  
A set is enumerable or countable iff it’s either finite or denumerable.  
 N.B. This does not imply that the set is recursively enumerable. 
A set is nonenumerable or uncountable iff it has a cardinality greater than ℵ0. 
 
Fun Facts: 

1. |ℕ| = |ℚ| = ℵ0. That is so, even though ℕ ⸦ ℚ. 
2. For any set A, |PA| > |A|. (Cantor’s Theorem.) Thus, |Pℕ| > |ℕ|.  
3. |ℝ| > ℵ0. I.e., |ℝ| is infinite but there is no 1-1 correspondence between the natural 

numbers and the reals. 
4. |ℝ| = 2ℵ0. That is, the cardinality of the reals = 2·2·2… 

 
Are there are any infinite cardinals between ℵ0 and 2ℵ0? The Continuum Hypothesis (CH) says 
‘no’; it is expressed as the claim that 2ℵ0 = ℵ1. It has been shown, however, that there is no proof 
of either CH or its negation in ZFC (assuming ZFC is consistent). 
 
Cardinal Arithmetic7 
Addition: For any cardinal numbers  and ,  +  = |A  B|, where |A| =  and |B| = , and 
where A and B are disjoint. Corollary: 

-If |A| ℵ0, then ℵ0 + |A| = ℵ0. (Cf. Hilbert’s Hotel). And in general, if at least one of |A|  
and |B| is infinite, then their sum is equal to whichever of |A| or |B| is greater. (If they are 
each equal to an infinite , then their sum is .) 

 
Multiplication: |A|·|B| = |A × B|. I.e. The product of these cardinalities equals the cardinality of 
their Cartesian product. Corollary: 
 -If at least one of |A| and |B| is infinite, then their product equal to whichever of |A| and  

|B| is greater. (If they are each equal to an infinite , then their product is .) 
 
Exponentiation: |A||B| is the cardinality of the set of all functions from B into A.  

I.e., |A| to the power of |B| equals the cardinality of the set E of all sets of pairs 
⟨x, y⟩ such that x  B and y  A (where for any set S  E, and given any x  B, there is 
exactly one pair in S with x as its first member). 

 
Other arithmetic operations are definable from these per usual. E.g., |A| – |B| = |C| iff |C| + |B| = 
|A|, and if |B|  0, then |A| / |B| = |C| iff |A| = |C|·|B|. 

 
7 Similar arithmetic operations exist for ordinal numbers, including the transfinite ordinals , 2, , etc. But there 
are disanalogies, e.g., 2 = , whereas 2ℵ0 > ℵ0. Transfinite ordinal arithmetic also comes with other surprises, such 
as the fact that addition is not commutative, e.g., 2 +    + 2. 


