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(BINOMIAL) SIGNIFICANCE TESTING 

 

To avoid the base-rate fallacy, we should consider the base-rate when estimating how likely our 

evidence makes a hypothesis. But unfortunately, very often we don’t know the base-rate. 

Consider the following example: 

 

Example: Gloria Stewart has a reputation of being clairvoyant. We decide to test her by taking 

an ordinary deck of cards, drawing a card, and having her identify the suit of the card without 

her looking. Suppose we give her 10 chances to do this. We discover that she is right 6 times. 

(Note that clairvoyance is still possible even if she is not infallible. Clairvoyance may be like 

eyesight where it is fallible but still able to provide knowledge.) So does the evidence indicate 

that she has clairvoyant power? Or is she just lucky in her guesses? 

 

It is impossible to say what the prior probability of clairvoyance is—and without that, we cannot 

readily calculate how likely the clairvoyance-hypothesis is, given our evidence. But we can 

answer a related question, namely: How likely is our evidence if Stewart is randomly guessing? 

If 6 out of 10 successes ends up being extremely unlikely under the guessing-hypothesis, then it 

may be reasonable to reject that hypothesis. 

 

Statisticians would call the null hypothesis “H0” the hypothesis that Stewart is just guessing. It is 

the hypothesis that our experimental evidence has a “null explanation,” no explanation other than 

random chance. The alternative hypothesis “H1” would be the hypothesis that Stewart has some 

clairvoyant power. Again, our plan is not to ask directly how probable H1 is. Rather, the plan is to 

ask: How likely is 6 successes out of 10 trials, on the assumption that H0 is correct? The 

conditional probability of our evidence in this context is called the “p-value.” The basic idea here 

is that if the p-value is sufficiently low, then assuming our testing process was legitimate, we 

should reject H0.1 

 
1 In fact, our test procedure here is not legitimate—ten trials is not enough to ensure that we know Stewart’s real 
success-rate in identifying cards. However, I’m going to mostly ignore this issue. If we were to use an appropriately 
large number of trials, the example would become too complex. (E.g., in lieu of using the binomial theorem below, 
we would need to use the Stirling approximation to the binomial). 
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IMPORTANT: If our p-value justifies rejecting H0, this does NOT mean we should conclude that 

H1 is true! There may be other explanations for Stewart’s success besides H1, e.g., perhaps she 

was somehow cheating the test. (Still, if our p-value justifies rejecting H0, that would be 

informative of something.2) Conversely: If H0 survives our test, that does NOT mean we should 

conclude that H0 is true! It would mean only that our evidence did not disprove H0. But there still 

may be other readily available evidence against H0. (This is why you often say that you “failed to 

reject the null” in the context of an experiment, rather than that you “proved the null.”) 

 

In our testing of Stewart, there are several steps in understanding how to determine the p-value.  

For convenience, assume for now that Stewart was correct in the first six trials specifically and 

incorrect in the last four trials. The probability of this happening, assuming H0, would be the 

probability of her guessing correctly on the first trial AND the probability of her guessing 

correctly on the second trial AND… AND the probability of her guessing incorrectly on the 

seventh trial AND … AND the probability of her guessing incorrectly on the tenth trial. 

Presumably, moreover, the trials are independent of each other. So, as per the mathematics of 

probability, we can use the [Simple AND Rule] to multiply all these probabilities together, in 

order to know what the chances are of her being correct on the first six and incorrect on the last 

four (assuming that she is just randomly guessing). 

 

Since there are 4 suits in an ordinary deck, Stewart would have a 1/4 chance of guessing 

correctly per trial, and a 3/4 chance of guessing incorrectly. And thus, the relevant calculation 

looks like this: 

 

  (1/4)6  (3/4)4 = 1/4096  81/256 = 81/1,048,576  

 

So the probability of guessing the first six correctly, and of guessing the last four incorrectly, is 

81 chances out of 1,048,576. 

 

 
2 In some significance tests, H1 is identified simply with the denial of H0. (Thus, instead of the hypothesis that 
Stewart “is clairvoyant,” H1 could instead be the hypothesis that Stewart is “not guessing”) Moreover, if H1 just is 
~H0, then rejecting H0 indeed means accepting H1. But usually, significance tests are not formulated this way. And 
our example above is a case where rejecting H0 is not the same as accepting H1. 
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But at this point, we should recognize that we are not just interested in the chances of Stewart 

guessing the first six correctly. We are rather interested in the chances of Stewart guessing any of 

the six correctly, in any order. After all, any success-rate of 60% should affect how we regard the 

null hypothesis. So in more precise terms, we want to know what the probability is of 6 

successes out of 10 in some order, under the null hypothesis. 

 

Now it is crucial here that, no matter what the order of correct and incorrect guesses, the chances 

of getting any particular combination of 6-and-4 will actually be the same as any other such 

combination under H0. Hence, since we already found what the chances are for one of the 

combinations, we just need to multiply that by the number of total combinations. 

 

Let ൫ଵ଴
଺

൯ be the total number of combinations where Stewart gets exactly 6 right out of 10 trials. 

The general formula to determine the number of combinations is as follows (where n is the total 

number of trials and k is the number of successes): 

 

൫௡
௞

൯ = 
௡!

௞!(௡ ି௞)!
 

 

So in our example, ൫ଵ଴
଺

൯ = 
ଵ଴!

଺!  ସ!
 = 

ଷ,଺ଶ଼,଼଴଴

଻ଶ଴  ଶସ
 = 210. Hence, there are 210 ways to get exactly 6 

successes out of 10 trials. Thus, if we multiply 210 by our earlier number, 81/1,048,576, we get 

the probability of Stewart guessing 6 successes out of 10 trials in any order. That number is 

17,010/1,048,576. 

 

But here things get a bit tricky. We now know the chances that she gets exactly 6 successes in 10 

trials. Yet there are other ways of getting 6 successes—namely, she could get 6 successes by 

getting 7 successes! And she could get 6 successes by getting 8, 9, or 10 successes. We have to 

count these possibilities as well, if we want to know the true chances of getting 6 successes under 

the null hypothesis. 

 

Now the chances of just guessing the first 7 correctly, and the last 3 incorrectly, is: 
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(1/4)7  (3/4)3 = 1/16,384  27/64 = 27/1,048,576 

 

Moreover, there are ൫ଵ଴
଻

൯ = 
ଵ଴!

଻!  ଷ!
 = 

ଷ,଺ଶ଼,଼଴଴

ହ଴ସ଴  ଺
 = 120 combinations possible of guessing 7 correctly 

and 3 incorrectly. So we multiply 120 by 27/1,048,576 to get the probability of Stewart getting 

any combo of 7-right-3-wrong under the null hypothesis. That number is 3240/1,048,576. 

 

We repeat the analogous procedure to get the chances of guessing any combo of 8-right-2-wrong, 

the chances of guessing any combo of 9-right-1-wrong, and the chances of guessing 10 right out 

of 10. In shortened form, our thinking here works out as follows: 

 

p(Exactly8/H0) = ൫ଵ଴
଼

൯  (1/4)8  (3/4)2 = 45  1/65,536  9/16 = 405/1,048,576 

p(Exactly9/H0) = ൫ଵ଴
ଽ

൯  (1/4)9  (3/4)1 = 10  1/262,144  3/4 = 3/1,048,576 

p(Exactly10/H0) = ൫ଵ଴
ଵ଴

൯  (1/4)10  (3/4)0 = 1  1/1,048,576  1  = 1/1,048,576 

 

We then add together the probabilities of guessing any 6-and-4 combo, any 7-and-3 combo, any 

8-and-2 combo, any 9-and-1, and the probability of guessing 10 out of 10. Summing those 

numbers then yields the probability of her getting at least 6 out of 10 successes under the null 

hypothesis. (This is a correct application of the [Simple OR Rule], given each combination 

mutually excludes all other combinations.) The summation is as follows: 

 

17,010/1,048,576 + 3240/1,048,576 + 405/1,048,576 + 3/1,048,576 + 1/1,048,576  

= 20,659/1,048,576 

 

Thus, there is just under a 2% chance of Stewart getting 6 successes in 10 trials, assuming H0.  

 

NOTE WELL: This does NOT mean that H0 itself has about 2% chance of being true, given the 

evidence. It goes the other way around: There is around 2% chance of getting this evidence, 

under H0. Even so, since that success-rate is quite unlikely under H0, the usual view is that we 

would be reasonable in rejecting H0 (assuming our testing procedure is otherwise legit). H0 could 

still be true, but it would be true only if something really unlikely happened during our testing.  
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Our process can be summarized by the following formula: 

 

[Binomial Theorem] If our evidence E is k successes in n binomial trials, and if p(S/H0) is 

the probability of a successful trial under the null hypothesis, then: 

𝒑(𝐄/𝐇𝟎) = ෍ ቀ
𝒏

𝒌
ቁ 𝒑(𝐒/𝐇𝟎)𝒌  (𝟏 − 𝒑(𝑺/𝐇𝟎))𝒏ି𝒌

𝒏

𝒌

 

 

The formula instructs us to take the probability (assuming H0) of k successes, and multiply it by 

the probability (given H0) of n – k failures. We then multiply that by the number of combinations 

where you get k successes in n trials. Call the result rk. We then do this again for k+1 successes: 

We take the probability (assuming H0) of k+1 successes, multiply by the probability (given H0) 

of n – k+1 failures. And we then multiply that by the number of combinations where you get k+1 

successes in n trials. Call the result rk+1. Subsequently, we calculate rk+2 for k+2 successes, and so 

on, up to result rn for n successes. After getting all those results, the formula tells us to sum 

together rk, rk+1, rk+2, …, rn. (That summing operation is what the Greek letter  indicates.) The 

resulting sum is the probability of getting at least k successes in n trials under the null 

hypothesis, i.e., it is p(E/H0), our p-value. 

 

Notice that this thinking is apt only if we are dealing with binomial trials—that is, trials where 

the results are binary—either ‘yes’ or ‘no’ (or in our example, ‘right’ or ‘wrong’). The p-value 

must be calculated in a different way when the results are not binary (e.g., with measurements 

along a continuum). But these other methods are more complicated and we’ll skip them here. 

 

Getting back to Stewart: We found that there is only about a 2% chance that she would get 6 out 

of 10 right by guessing. To repeat, that does NOT mean we should conclude that she is 

clairvoyant. What we can say that if she was just guessing during our trials, then her success-rate 

was really unlikely. And so, if our testing procedure was otherwise legitimate, that is a reason to 

conclude that she was not just guessing during the trials.  

 

Again, none of this suggests that H0 itself has about 2% chances of being true. Many statisticians 

(so-called “frequentists”) would say it does not even make sense to say that H0 has a probability 
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of being true. They would insist that either Stewart was randomly guessing during our trials or 

not (just like she is either pregnant or not). Other statisticians will disagree however. Regardless, 

everyone would agree that our evidence concerning Stewart does not show that the null 

hypothesis has about a 2% chance. Rather, what has approximately 2% chances is our evidence 

under the null hypothesis. That is what the p-value represents. 

 

Even so, if the testing procedure is otherwise legitimate, a p-value at or below 5% is standardly 

regarded as enough to reject the null hypothesis. Such a p-value suggests that the evidence is 

“sufficiently incompatible” with H0 to warrant rejecting H0. But in some scientific contexts, a 

lower p-value is required, e.g., at or below 1%. So whether scientists would reject our null 

hypothesis about Stewart would depend partly on a decision concerning how much risk shall be 

tolerated. 

 

That may seem odd. Whether our evidence “disproves” the null hypothesis will depend on 

someone’s preferences about risk-tolerance. And there’s a question about why 5% or 1% 

represents the appropriate level of tolerance. Granted, there seems to be good reason not to set it 

higher than 5%—if we did, our science would seem less trustworthy. But why not a require a p-

value at or below .005% or even .0000001%? After all, if we want to speak of “scientific proof,” 

a stricter criterion might be in order.  

 

Regardless, a p-value of 5% is standardly regarded as the threshold of “statistical significance.” 

And this is where “significance testing” gets its name—it is a test for whether the evidence under 

the null hypothesis falls below the p-value, the chosen level of statistical significance. 

 

To summarize, then, we have surrendered the ambition of giving an exact assessment of the 

following abductive argument: 

 

(P1) The probability of Stewart identifying a suit correctly is 1/4, under the null 

       hypothesis. 

 (P2) Stewart identified a suit correctly 6 out of 10 times. 

 (C1) So, Stewart is clairvoyant. 
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We are rather giving a deductive argument where, instead of (C1), we use (P1) and (P2) to 

conclude (C2): 

 

 (C2) So, (P2) has about 2% chances of being true under the null hypothesis. 

 

We are then adding that, according to the standards one typically sees in science—and assuming 

our testing procedure was legitimate—the argument for (C2) also justifies the abductive 

inference to (C3): 

 

 (C3) So, the null hypothesis is false: Stewart is not just randomly guessing. 

 

But this in no way implies that (C1) is true. 

   



8 

Quick Reference Sheet          
 
Key Definitions 
1. The absolute or prior probability of P is p(P) 
2. The posterior probability of P given Q is p(P/Q) 
3. P is independent of Q iff p(P) = p(P/Q) 
4. P and Q are mutually exclusive iff (P & Q) cannot be true. 
5. The p-value in a significance test is p(E/H0), where E is the evidence from the test and H0 is 

the null hypothesis. This is almost always NOT the same as p(H0/E)! 
 
Axioms 
1a. 0 ≤ p(P) ≤ 1   
1b. 0 ≤ p(P/Q) ≤ 1 
2. If P cannot be false, then p(P) = 1  
3. [Simple OR Rule] If P and Q are mutually exclusive, then p(P  Q) = p(P) + p(Q)  
 
Basic Theorems 
1. [NOT Rule] p(~P) = 1  p(P)  
2. [Simple AND Rule] If Q is independent of P, then p(P & Q) = p(P)  p(Q) 
3. [AND Rule] p(P & Q) = p(P)  p(Q/P) 
4. [OR Rule] p(P  Q) = p(P) + p(Q)  p(P & Q) 
 
Theorems about Posterior Probabilities 
5. [Bayes’ Theorem] If p(Q) ≠ 0, then: 

 p(P/Q) = p(P)  p(Q/P) 
          p(Q) 
 

6. [Binomial Theorem] If our evidence E is k successes in n binomial trials, and if p(S/H0) is the 
    probability of a successful trial assuming H0, then: 
 

𝑝(𝐸/H଴) = ෍ ቀ
𝑛

𝑘
ቁ 𝑝(E/H଴)௞  (1 − 𝑝(S/H଴))௡ି௞

௡

௞

 

 

…where ൫௡
௞

൯ = 
௡!

௞!(௡ ି௞)!
 


