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UNDECIDABILITY 
 
 

Some sets—including many functions and relations—are characterized by a rule or operation 
that is an effective method, i.e., an algorithm. Roughly, this means that there is a finite series of 
well-defined, computer-implementable (or “mechanical”) instructions, which can be completed 
in a finite time, for identifying members of the set.  
 
Where A is any set: 
 A is semi-decidable or recursively enumerable or effectively enumerable iff: some 

algorithm correctly identifies that x  A, for any x  A. 
 A is decidable or recursive or computable iff: some algorithm correctly identifies that  

x  A, for any x  A, and it correctly identifies that y  A, for any y  A. 
Take heed: Any decidable set also counts as “semi-decidable.” 

 
Church’s Thesis (CT) says that any intuitively computable set is computable by a Turing 
Machine (equivalently, by a recursive function; more on these later). CT is not believed to admit 
of strict mathematical proof, but it is useful in the attempt to make more precise our intuitive 
notions of “algorithm,” “decidable,” “computable,” etc. 
 
Despite the roughness in these notions, we can prove several non-trivial (and sometimes 
surprising) results about algorithms, decidability, etc. 
 
 
51.2: The Algorithms are Countable 
 
Premises: 
51.1: English (or any other language) can unambiguously express the series of instructions that 
define any algorithm, at least if it is supplemented (where necessary) by a finite set of 
meaningful symbols from other languages.  
14.1: There are only countably many finite strings of symbols from a finitary alphabet. 
 
Why believe 51.1? An inexpressible instruction just boggles the mind. (Hunter.) 
 
Proof of 14.1: Let each symbol from your finite alphabet be assigned its own numeric code. 
Then, any finite string can be coded by the numeral that results from concatenating, in order, the 
codes for its alphabetic symbols. All finite strings are thereby mapped to a subset of natural 
numbers, and any subset of natural numbers is countable. 
 
Proof of 51.2: Observe that (supplemented/) English will have a finite alphabet. So by 14.1, the 
language has only countably many finite strings. Now since any algorithm is defined by a 
finitary series of instructions, then by 51.1, such instructions are always unambiguously 
expressed by some finite string. Hence, there must be only countably many algorithms.  
 
 
 



 
 

Corollaries:  
51.2 (and 51.3): Some sets of natural numbers are not semi-decidable, hence, undecidable. 
51.6: There are only denumerably many computable functions from ℕ into ℕ. 
 
 
51.8: The Diagonal Function is Non-Computable 
 
Proof: By 56.1, the set of computable functions from ℕ into ℕ is denumerable. Let ⟨f0, f1, f2…⟩ 
be an enumeration of the computable functions of one argument from ℕ into ℕ. Define the 
diagonal function g as the total function from ℕ into ℕ defined by the rule: 
 
 g(n) =   1  if fn(n) = 0 

0 otherwise. 
 

Suppose for reductio that g is computable. Then for some k, g = fk. That is, g would be one of the 
computable functions in the enumeration ⟨f0, f1, f2…⟩. Now by definition of g, g(k) = 1 iff fk(k) = 
0. But this means g(k) = 1 iff g(k) = 0, which is impossible. So g is not a computable function. 
 
Corollary: 
51.9: The set ⟨f0, f1, f2…⟩ is not effectively enumerable. 
 
Proof: Suppose otherwise for reductio. Then, there would be an algorithm that decides what the 
jth function is, i.e., what fj is in the enumeration, for arbitrary j. Further, since all functions in the 
enumeration are computable, one could then have an algorithm for deciding the value of fj(k), for 
any j and k. So in particular, the algorithm would decide the value of fn(n), for any n. But such an 
algorithm would suffice to make computable the diagonal function g (defined above). Yet g is 
not computable. So by reductio, ⟨f0, f1, f2…⟩ is not effectively enumerable. 
  
 
51.10 Respectable Arithmetic is Undecidable 
 
51.10: Any “respectable” formal system of arithmetic is undecidable with respect to its theorems. 
[“Generalized Undecidability” Theorem, or GU] 

-Peano Arithmetic, Robinson Arithmetic, and Hunter’s System H are each “respectable,” 
though it takes much work to show this. Also, since System H is a finite extension of 
QS=, this leads to the undecidability of QS= as well. (Church’s Theorem.) 

 
Definition. A formal system of arithmetic is a formal system such that: 

1. Some theorems express truths of number theory, on its intended interpretation. 
2. It contains a numeral for each natural number n, written as ‘n’. 
3. Wff are finite, and composed from a finite alphabet. 

 
 
 



 
 

Definition: A formal system of arithmetic is respectable iff:1 
(a) The system is consistent. 
(b) Every decidable set of natural numbers is represented in it (see below). 
(c) An open wff is a theorem iff some closure of it is. 

 
Definition. A set X of natural numbers is represented in a formal system S iff there is a formula  

A, with just one free variable v, such that for each natural number n:   
⊢S An/v iff n  X 

 
Proof of GU 
Lemma 1: If S is a formal system of arithmetic, there is a diagonalizing function g whose range 
is not represented in S. 
 
Where S is a formal system of arithmetic, each one-place formula A of S represents the range of 
some function f, defined as follows: 
 

f(n) =   0  if ⊢S An/v 
1 otherwise. 

 
Since the alphabet is finite, we know (from the coding process in 14.1) that the one-place 
formulas of S have an effective enumeration ⟨A0, A1, A2…⟩. Let ⟨f0, f1, f2…⟩ be the corresponding 
enumeration of the functions whose ranges are represented by these formulae. Next, define the 
diagonalizing function g as follows: 
 

g(n) =   1  if fn(n) = 0 
0 otherwise. 

 
Then, g is not in the enumeration ⟨f0, f1, f2…⟩. After all, if g were the kth function in the 
enumeration, then g(k) = fk(k) = 1 iff fk(k) = 0, which is impossible. 
 
Lemma 2: If S is decidable, then G (the range of g) is decidable. 
Suppose for conditional proof that the theorems of S are decidable. Then, one could decide 
whether ⊢S An/v, for any wff An/v. That would suffice to make each of ⟨f0, f1, f2…⟩ computable. 
One could then have an algorithm for deciding the value of fj(k), for any j and k. So in particular, 
the algorithm would decide the value of fn(n), for any n. But such an algorithm would suffice to 
make computable the diagonalizing function g. So its range, G, would be decidable. 
 
The Lemmas Imply: If S is decidable, then G is a decidable set that is not represented in S—
meaning S is not respectable. So by contraposition, if S is respectable, then S is undecidable. 
 
 

 
1 Hunter actually uses ‘if’ instead of ‘iff’, so that his definition of ‘respectable’ is only partial. But we need ‘iff’ here 
so to secure the reasoning under “The Lemmas Imply.” ‘Respectable’ seems to be Hunter’s own term, and I’m not 
sure why he hedged it. He may want to avoid controversy in suggesting that any formal arithmetical system where 
(c) fails is “not respectable.” (Lots of legit systems don’t have open wff as theorems.) On the other hand, I’m unsure 
why (c) is needed in the first place. Hunter exploits it in his proof of CD, but the proof below of CD does not. 



 
 

51.13 Generalized Gödel Theorem 
 
51.13: If S is a respectable formal system of arithmetic with a decidable set of wff and a 
decidable set of proofs, then S is incomplete, i.e. not negation-complete. [GG] 
 
Premise: 
51.12 If S has a decidable set of wff and a decidable set of proofs, then S is consistent and 
negation-complete only if S is decidable. [“Conditional Decidability” Theorem, or CD] 
 
-GG follows directly from GU and CD. 
 
Proof of CD 
Suppose for conditional proof that a consistent, negation-complete system S has a decidable set 
of wff, and a decidable set of proofs. We can then use Gödel numbering to show that there is an 
effective enumeration of the proofs ⟨P0, P1, P2…⟩. (Trust me on this for now.) Now given an 
arbitrary wff A, the negation-completeness of S means that either A or ~A will be a theorem. So 
run through each of the proofs in the enumeration until you get to one where the last line is A or 
the last line is ~A. If you find a last line with A then A is a theorem, and (by the consistency of 
S), ~A is not a theorem. Or if you find a last line with ~A then ~A is a theorem, and (by the 
consistency of S), A is not a theorem. So, by this decision procedure, S is decidable. 
 


