
Phil 5506: Metalogic
T. Parent

UNDECIDABILITY

Some sets—including many functions and relations—are characterized by a rule or operation
that is an effective method, i.e., an algorithm. Roughly, this means that there is a finite series of
well-defined, computer-implementable (or “mechanical”) instructions, which can be completed
in a finite time, for identifying members of the set.

Where A is any set:
 A is semi-decidable or recursively enumerable or effectively enumerable iff: some

algorithm correctly identifies that x  A, for any x  A.
 A is decidable or recursive or computable iff: some algorithm correctly identifies that

x  A, for any x  A, and it correctly identifies that y  A, for any y  A.
Take heed: Any decidable set also counts as “semi-decidable.”

Church’s Thesis (CT) says that any intuitively computable set is computable by a Turing
Machine (equivalently, by a recursive function; more on these later). CT is not believed to admit
of strict mathematical proof, but it is useful in the attempt to make more precise our intuitive
notions of “algorithm,” “decidable,” “computable,” etc.

Despite the roughness in these notions, we can prove several non-trivial (and sometimes
surprising) results about algorithms, decidability, etc.

51.2: The Algorithms are Countable

Premises:
51.1: English (or any other language) can unambiguously express the series of instructions that
define any algorithm, at least if it is supplemented (where necessary) by a finite set of
meaningful symbols from other languages.
14.1: There are only countably many finite strings of symbols from a finitary alphabet.

Why believe 51.1? An inexpressible instruction just boggles the mind. (Hunter.)

Proof of 14.1: Let each symbol from your finite alphabet be assigned its own numeric code.
Then, any finite string can be coded by the numeral that results from concatenating, in order, the
codes for its alphabetic symbols. All finite strings are thereby mapped to a subset of natural
numbers, and any subset of natural numbers is countable.

Proof of 51.2: Observe that (supplemented/) English will have a finite alphabet. So by 14.1, the
language has only countably many finite strings. Now since any algorithm is defined by a
finitary series of instructions, then by 51.1, such instructions are always unambiguously
expressed by some finite string. Hence, there must be only countably many algorithms.

Corollaries:
51.2 (and 51.3): Some sets of natural numbers are not semi-decidable, hence, undecidable.
51.6: There are only denumerably many computable functions from ℕ into ℕ.

51.8: The Diagonal Function is Non-Computable

Proof: By 56.1, the set of computable functions from ℕ into ℕ is denumerable. Let ⟨f0, f1, f2…⟩
be an enumeration of the computable functions of one argument from ℕ into ℕ. Define the
diagonal function g as the total function from ℕ into ℕ defined by the rule:

 g(n) = 1 if fn(n) = 0

0 otherwise.

Suppose for reductio that g is computable. Then for some k, g = fk. That is, g would be one of the
computable functions in the enumeration ⟨f0, f1, f2…⟩. Now by definition of g, g(k) = 1 iff fk(k) =
0. But this means g(k) = 1 iff g(k) = 0, which is impossible. So g is not a computable function.

Corollary:
51.9: The set ⟨f0, f1, f2…⟩ is not effectively enumerable.

Proof: Suppose otherwise for reductio. Then, there would be an algorithm that decides what the
jth function is, i.e., what fj is in the enumeration, for arbitrary j. Further, since all functions in the
enumeration are computable, one could then have an algorithm for deciding the value of fj(k), for
any j and k. So in particular, the algorithm would decide the value of fn(n), for any n. But such an
algorithm would suffice to make computable the diagonal function g (defined above). Yet g is
not computable. So by reductio, ⟨f0, f1, f2…⟩ is not effectively enumerable.

51.10 Respectable Arithmetic is Undecidable

51.10: Any “respectable” formal system of arithmetic is undecidable with respect to its theorems.
[“Generalized Undecidability” Theorem, or GU]

-Peano Arithmetic, Robinson Arithmetic, and Hunter’s System H are each “respectable,”
though it takes much work to show this. Also, since System H is a finite extension of
QS=, this leads to the undecidability of QS= as well. (Church’s Theorem.)

Definition. A formal system of arithmetic is a formal system such that:

1. Some theorems express truths of number theory, on its intended interpretation.
2. It contains a numeral for each natural number n, written as ‘n’.
3. Wff are finite, and composed from a finite alphabet.

Definition: A formal system of arithmetic is respectable iff:1
(a) The system is consistent.
(b) Every decidable set of natural numbers is represented in it (see below).
(c) An open wff is a theorem iff some closure of it is.

Definition. A set X of natural numbers is represented in a formal system S iff there is a formula

A, with just one free variable v, such that for each natural number n:
⊢S An/v iff n  X

Proof of GU
Lemma 1: If S is a formal system of arithmetic, there is a diagonalizing function g whose range
is not represented in S.

Where S is a formal system of arithmetic, each one-place formula A of S represents the range of
some function f, defined as follows:

f(n) = 0 if ⊢S An/v
1 otherwise.

Since the alphabet is finite, we know (from the coding process in 14.1) that the one-place
formulas of S have an effective enumeration ⟨A0, A1, A2…⟩. Let ⟨f0, f1, f2…⟩ be the corresponding
enumeration of the functions whose ranges are represented by these formulae. Next, define the
diagonalizing function g as follows:

g(n) = 1 if fn(n) = 0
0 otherwise.

Then, g is not in the enumeration ⟨f0, f1, f2…⟩. After all, if g were the kth function in the
enumeration, then g(k) = fk(k) = 1 iff fk(k) = 0, which is impossible.

Lemma 2: If S is decidable, then G (the range of g) is decidable.
Suppose for conditional proof that the theorems of S are decidable. Then, one could decide
whether ⊢S An/v, for any wff An/v. That would suffice to make each of ⟨f0, f1, f2…⟩ computable.
One could then have an algorithm for deciding the value of fj(k), for any j and k. So in particular,
the algorithm would decide the value of fn(n), for any n. But such an algorithm would suffice to
make computable the diagonalizing function g. So its range, G, would be decidable.

The Lemmas Imply: If S is decidable, then G is a decidable set that is not represented in S—
meaning S is not respectable. So by contraposition, if S is respectable, then S is undecidable.

1 Hunter actually uses ‘if’ instead of ‘iff’, so that his definition of ‘respectable’ is only partial. But we need ‘iff’ here
so to secure the reasoning under “The Lemmas Imply.” ‘Respectable’ seems to be Hunter’s own term, and I’m not
sure why he hedged it. He may want to avoid controversy in suggesting that any formal arithmetical system where
(c) fails is “not respectable.” (Lots of legit systems don’t have open wff as theorems.) On the other hand, I’m unsure
why (c) is needed in the first place. Hunter exploits it in his proof of CD, but the proof below of CD does not.

51.13 Generalized Gödel Theorem

51.13: If S is a respectable formal system of arithmetic with a decidable set of wff and a
decidable set of proofs, then S is incomplete, i.e. not negation-complete. [GG]

Premise:
51.12 If S has a decidable set of wff and a decidable set of proofs, then S is consistent and
negation-complete only if S is decidable. [“Conditional Decidability” Theorem, or CD]

-GG follows directly from GU and CD.

Proof of CD
Suppose for conditional proof that a consistent, negation-complete system S has a decidable set
of wff, and a decidable set of proofs. We can then use Gödel numbering to show that there is an
effective enumeration of the proofs ⟨P0, P1, P2…⟩. (Trust me on this for now.) Now given an
arbitrary wff A, the negation-completeness of S means that either A or ~A will be a theorem. So
run through each of the proofs in the enumeration until you get to one where the last line is A or
the last line is ~A. If you find a last line with A then A is a theorem, and (by the consistency of
S), ~A is not a theorem. Or if you find a last line with ~A then ~A is a theorem, and (by the
consistency of S), A is not a theorem. So, by this decision procedure, S is decidable.

