An Anomaly in Diagonalization

T. Parent (Nazarbayev University)
nontology@gmail.com

0. Introduction

It is known that some diagonal arguments, when formalized, do not demonstrate
the impossibility of the diagonal object, but instead reveal a breakdown in
definability or encoding. For example, in a formal setting, Richard’s paradox
does not yield a contradiction; it instead reflects that one of the relevant sets is
ill-defined. (For elaboration and other examples, see Simmons 1993, Chapter 2.)

This invites the possibility that other diagonal arguments may reflect similar
anomalies. The diagonal argument against a universal p.r. function is considered
in this light. The impetus is an algorithm which appears to satisfy all standard
criteria for being p.r. while simulating the computation of f;(i,n) for any index
1 of a binary p.r. function. The paper does not attempt to explain why this
construction apparently survives the usual diagonal objection, but presents it in
a form precise enough to support that analysis.

Of course, the algorithm should not be possible, given the standard result that
no universal p.r. function exists. But that only reinforces the significance of the
construction. It demonstrates that the diagonal argument, at least in this case,
does not entail what it is commonly believed to entail. Again, following Simmons
(1993), it is likely that the argument instead shows that certain background
assumptions fail. Pursuing this lead is, I hope, a task that the broader community
will find worthwhile. But the present paper is focused exclusively on showing
that the construction contains no error, and that the standard moral drawn from
the diagonalization must be incorrect.

One preliminary: The following normally does not discuss p.r. functions directly
but rather function symbols fz within a version of Primitive Recursive Arithmetic
(PRA).! This is because the algorithm relies crucially on numeric subscripts, and
it is unproblematic which numeric subscript a function symbol has. In contrast,
it is dubious to assume that, e.g., the factorial function itself has some specific
index attached to it (in Plato’s heaven, as it were). The discussion thus proceeds
primarily by considering function symbols rather than functions per se.

1. Exposition of PRA—

We shall focus on a weakened version of PRA; cf. Skolem (1923); Hilbert &
Bernays (1934, ch. 7); Curry (1941). Call it PRA—. The weakening is that

IThis may suggest a similarity to work by Princeton mathematician Edward Nelson (2011),
in which PRA was purportedly shown inconsistent. (Tao’s 2011 response caused Nelson 2011a
to retract his claim.) This paper is emphatically not alleging that PRA is inconsistent. Rather,
the claim is that the significance of one diagonal argument has been misidentified. Another
difference worth mentioning is that Nelson was focused on the induction axiom, whereas this
paper concerns a more minimal version of PRA which does not include the induction axiom.

the induction axiom is replaced with the axiom that any positive integer has a
predecessor (cf. Q, Robinson’s 1950 arithmetic).? But for our purposes, the most
important feature of PRA- is the way a p.r. function is assigned a subscripted
function symbol; this is detailed later in this section.

First, terms of PRA— are defined inductively as follows:
(a) ‘0’ is a term.

(b) If 7 is a term, then so is 7. (‘0’ followed by zero or more occurrences
of “ are the numerals. Let 7 be the numeral co-referring with 7.)?

(¢) wvnis a term (a variable).

(d) If 71, ..., Ty, are terms, then so is fam(71...7,) (2 non-numeric or
nn-term).

But for convenience, Arabic numerals will be used and I revert to using ‘z,’, ‘y’,
etc., as variables. Also, a nn-term will normally be written as f(71, ..., 7).

The well-formed formulae (wff) of PRA— are defined thus:
(i) If 71 and 79 are terms, then 79=75 is a wif.
(ii) If ¢ is a wff, then so is ~¢.
(iii) If ¢ and ¢ are wif, then so is (¢ D).

¢

Assume that ‘=", ‘~’, and ‘D’, have their standard interpretations. Parentheses
will be omitted when there is no danger of confusion.

The system has all axioms from the Hilbert schemes:
(H1) ¢5 (¢ D ¢)
(H2) (0> (% 2x) 2 ((¢2>9) 2 (6 >x))
(H3) (~v¢ D> ~¢) D (D)

PRA- also has the standard axiomatic analysis of ‘=
Identity and the Indiscernability of Identicals:

(U2) z=x
(I=) 71=12 D (¢[z/71] D B[z/T2])

Here and elsewhere, ¢[z/7] is the result of uniformly replacing ‘z’ in ¢ with 7.

)

, as per the Law of Universal

2Also, PRA sometimes includes principles for course-of-values recursion. Such things are
left aside also.

3In what follows, I often elide the distinction between use and mention. Quine’s (1951)
corner quotes could be used to distinguish an expression "7/ from what it represents. (Some
other notation for Gédel numbers would then be required.) But to avoid clutter, I instead rely
on context to disambiguate.

Further, in PRA— each p.r. function is assigned to at least one basic function
symbol f,; axioms defining those symbols appropriately are included. Per Godel
(1931, pp. 179-180), the axioms shall be specified inductively.*

The inductive definition provided is more involved than is usual, but the index
assigned to a p.r. function will effectively code the composition of the function,’
and this will be crucial later. (I assume some standard way of Gédel numbering
symbols, string of symbols, and sequences of strings; cf. Godel, pp. 179.)
Moreover, it is important that the coding, and thus, the enumeration of the
axioms for the p.r. functions is primitive recursive.® Where ‘*’ indicates the
concatenation of symbols:

Axioms for base p.r. functions:

The 0" axiom is: fo(z)=0.

The 1%% axiom is: f1(z)=1'

If ¢ codes 7k where 1<j<k<c¢, then the ¢ axiom is:
fe(za, ..., zp)=1;

Axioms for composed p.r. functions:

If ¢ codes the string 0*b*c1* ... *¢,*k (and each of b, ¢1, ..., ¢y,
and k is less than c), and the b, ¢;*" ... and ¢, axioms define,
respectively, fp(z1, ..., Tn), fer (w1, ...\ @), ..., and fen(1, ..o\ @3),

then the ¢t axiom is:

felx, ooy ap)=f(fer(z1, oy),y ooy fon(T1, oy Tk))

Axioms for p.r. recursions:

If ¢ codes the string ‘’*a*d*k (and each of a, d, and k is less than ¢),
and the o' and d*™® axioms define, respectively, f,(z1, ..., 2) and
fa(zy, ..., Tpyo), then where (¢ & 1) is shorthand for ~ (¢ D ~ 1),
the ¢ axiom is:

fe(zry ooz O)=folz1, ..., 2) &

felx, ooy agy) =fa(fe(zr, ooy Thy ¥), 21, -y Thy Y)

In both cases, the parenthetical “and each. ..is less than ¢” is eliminable. The
index c is independently guaranteed to exceed the arity k, as well as the index
for any function used to define f,. On a standard Go6del numbering, the code
for n is greater than n; hence, since ¢ codes a string consisting of k and the
subscripts of the component function symbols, inter alia, ¢ will be greater than
any of these.” This fact about ¢ will be needed at the end of the next section.

4All references to Godel will be in relation to his (1931).

5While explicit subscript-dependent constructions are not typical, it is standard that
primitive recursive enumerations encode the definitions of p.r. functions. See, e.g., Theorem
4.1 in Cutland (1980, ch. 4). The subscripts thus do not introduce a non-standard semantic
assumption, but rather make overt a practice normally left implicit.

6Since a p.r. enumeration must be total, let n map to 0 when n enumerates no axiom.

"Relatedly, with a composed p.r. function, if f, has arity n, it must be that n<c. After all,
¢ codes n+2 symbols, and the code for n+2 symbols is always greater than n itself.

Moving on, PRA—- also has the following arithmetical axioms:
(Al) ~0=2
(A2) =y Dz=y
(A3) ~0=zD> (Fy< z)a=y
As usual, ‘(Jy < x)’ expresses bounded existential quantification (a p.r. function).
The rules of inference in PRA— are modus ponens and variable substitution:
(MP) From ¢ and (¢ D), v is derivable.
(VS) From ¢(z1, ..., @), ¢lz/T1], ..., [2n/Tn] is derivable.

A finite sequence of wif counts as a derivation of ¢ in PRA— from a (possibly
empty) set of wif I" iff: The first members are the members of T" (if any), the
last member is ¢, and any member of the sequence is either a member of I', an
axiom, or is derivable from previous members via some inference rule in the
system. When I is empty, we say that the sequence is a proof of ¢ in PRA—.

2. Schematics for a universal function
This section begins the construction of the following function wu:
u(d, n)=m iff fi(i, n)=m is a theorem of PRA~.

The existence of a universal function should be uncontroversial. But as will be
argued in section 6, our construction reveals that the function is p.r.

The construction starts with a p.r. proof predicate—but like PRA, PRA— has
no predicate that represents in toto the relations between theorems and their
proofs, as it lacks unbounded quantifiers. Yet, if ¢ has Gédel number "¢, we
can define an “i-bounded” p.r. proof predicate B(i, n, "¢, which is satisfied iff
¢ has a proof coded by n where any axiom may occur except those beyond the
i*? axiom defining a p.r. function symbol.

In defining the i-bounded proof predicate, we skip several details since they
are somewhat tedious and are identical to those for Godel’s predicate B(z, y)
(p- 186, #45 in Godel’s list of p.r. functions and relations). Or at least, only
minor revisions are required. (For instance, unlike Godel’s system, PRA— is
first-order only and has no quantifiers; many of Gédel’s definitions are thus more
complex than we need.) The only revisions which may not be obvious concern
the definition of an i-bounded “axiom predicate” Az(7, n) for PRA— (cf. #42 in
Godel’s list). This is a predicate which represents the axioms for PRA- except
those beyond the i*" axiomatic definition of a p.r. function symbol.

To construct Az(i, n), we first define a p.r. predicate AzPR(i, j) which is satisfied
iff j codes the i*" or earlier axiom for a p.r. function. Recall that we gave earlier
a p.r. enumeration of (the codes of) these axioms. Hence, we know that there
is a p.r. enumeration e such that if e(7) # 0, e(¢) codes the axiom defining the

™" p.r. function symbol.® This enumeration allows us to adequately define the
predicate as: AzPR(4, j) iff 3z < i)(e(z)=j & j#£0).

The predicates representing the logical, arithmetical, and ‘=" axioms are presumed
given. So we have what we need to define Az(¢, n), and thus, to define an i-
bounded p.r. proof predicate B(i, n, "¢7) in the manner of Gédel.

Given B(i, n, "¢"), we now define U(i, n, m) as a predicate that strongly
represents the function u. Briefly:

U(i, n, m) iff B(4, s(i, n), rﬁ(j,ﬂ) =m")

This indicates that U(i, n, m) holds iff s(¢, n) codes an i-bounded proof in PRA-
of fi(i, n)=m. The suggestion will be that, if this formula has a proof at all, the
object coded by s(i, n) will count as one (and otherwise it will not).

Roughly, the idea is to define s(i, n) as follows, where e(7) again enumerates
(the codes of) the axioms for the function symbols:

(i) ep("fi(i,n) =m™) if e(i) codes an axiom defining f?,
s(i,n) = - i
0 otherwise.

This is meant to express that, when the defining condition is satisfied, s outputs
the code for a “canonical proof” of f;(i, n)=m, for some m. Thus, s purports to
compute what m is, given only 7 and n, by generating a proof wherein the term
fi(4, n) is reduced to a numeral.

Our concern, however, is whether this proof generator can be p.r. Again, diagonal
arguments suggest a negative answer. Yet the peculiarity is that it seems one
can describe such an algorithm. Here is a brief, intuitive gloss. (The detailed
description starts in section 4.) First, the algorithm checks whether e(7) codes
an axiom defining fl2 If not, it outputs 0 and halts. Otherwise, it starts a proof
with this axiom, and then instantiates it on 7 and n; this leads to an equality
that is of the form f;(4, n)=¢;(4, n) (unless f; expresses a basic binary projection,
which the algorithm can handle separately). The proof now adds a line which
is the same as the preceding except that, to the right of ‘=’, the rightmost,
innermost nn-term 7 is replaced by a term that defines it. (The defining term is
recovered from the information in 7’s subscript.) The algorithm then repeats
this as needed, replacing the rightmost, innermost term by a term indicated by
its subscript, until a line is reached where ‘=’ is followed only by a numeral.

At a glance, however, the algorithm seems to require an unbounded search, for
it is unknown how many replacements are needed to reduce a given term. Yet

8This does not imply the existence of a p.r. function g(7) that outputs the i*" p.r. function.
(That alone would allow a contradictory diagonal function.) Our function does not have
functions in its range, but rather codes for various syntactic strings. These happen to code
definitions of p.r. functions. But a malignant diagonal function would need to compute the ith
p.r. function on input 7. And that would require an unbounded search of, e.g., the proofs of

PRA-, to find one ending with an equality that identifies what f;(¢) is.

the algorithm can halt at exactly the right time without this information. After
each reduction, the algorithm simply checks whether zero ‘f’s are found to the
right of ‘=" in the latest line of the proof (where this check is bounded by the
length of the wif). If zero ‘f’s are found, the algorithm halts; otherwise, not. By
this means, the process will halt exactly when it should halt. So effectively, the
algorithm is able to compute any binary p.r. term at the requisite (primitive)
recursive depth.

If so, then since a p.r. function symbol is here defined only by function symbols
with lower subscripts, a proof of f;(4, n)=m yielded by the algorithm would count
as an “i-bounded” proof. In which case, s(i, n) would render true the sentence
B(4, s(4,n)," fi(i,n)=m"), as intended.

3. Preparatory remarks, re: function symbols within proofs

This section illustrates how the subscripts on fuction symbols can guide the
generation of a proof, to give a clearer sense of how the algorithm works. This is
not strictly necessary, however, and so some readers may prefer to skip to the
next section.

One question is whether a well-defined algorithm is even able to “access” the
subscript on a function symbol. Officially, howevero, a nn-term has no subscript;
it is of the form fnm(71...7,). More importantly, operations defined on such
indicies is standard practice, as seen in the definitions of AzPR(i, n) and of
Kleene’s (1952) T-predicate.

As an illustration of the information coded by the indices, consider the term
fo(1, 2), where ¢ codes the string ‘7’*¢*d*1. The 15 member of the string tells
us that f. expresses a p.r. recursion, whereas the 2°¢ and 3'¢ members indicate
that f, is defined by fq and fg. So we can recover that the axiom for f, is

felz, 0=fo(x) & folz, y)=falfe(z, y), 2, y).

Suppose also that ¢ codes 1*1, whence it expresses simple identity. And suppose
d codes 0*p*1*¢*¢*3. Since the string begins with 0, it indicates that d indexes a
of f;. So we can recover that its axiom is fa(z y):?ﬂ(fl(z), fo(m), fo(y)). (Tt
may seem unnecessary for the axiom to include f;, but this is so that it has the
right form for a composed p.r. function.)

Suppose now that p codes 1*3 so that f, expresses the ternary 15t-projection
function. Then, f. expresses addition and that f.(1, 2)=3. The algorithm will
yield a proof of this by accessing in this way the information encoded in c.

For expediency’s sake, the proofs shall utilize inference rules corresponding to
standard evaluation rules for p.r. terms. Where n, n;, ng, ... are numerals:

(Z) From ¢(fo(n)), ¢(0) is derivable.

(S) From ¢(f1(n)), ¢(n') is derivable.

(P) If ¢ codes j*k and 1<j<k<c, then from ¢(fe(ny,...,ny)), ¢(n;)
is derivable.

(C) If ¢ codes the string 0% bxci*. .. * c,*k, and the b, ;0 ..
and ¢, axioms define fy(z1,...,2x), fe, (@1, @), oy
and fe (z1,...,2x), respectively, then from ¢(fe(ny,...,ny)),
(b(fb(fc (g, 5np)s -5 fe, (g, ., 1)) is derivable.

(R1) If ¢ codes the string “"*a*d*k and the o'® and d*!" axioms

define fy(z1,...,xx) and fy(x1,...,Tpq2), respectively, then
from ¢(fe(ny,...,n4,0)), ¢(fa(ny, ..., ny)) is derivable.

(R2) Under the same antecedent as (R1), from ¢(fc(ny,...,ny, 1)),
O(falfe(ng, ... ,ny,n),nq,...,ny,n)) is derivable.

These are in fact more restrictive than the usual evaluation rules, for they apply
to terms loaded with numerals only. (This is to simplify things later.) Regardless,
we prove in section 5 that the rules are sound. Soundness means, moreover,
that they are mere shortcuts for what could be proven otherwise in PRA—. Our
remarks will therefore bear on PRA—, even though the shortcut rules are not
officially part of that system.

We now give an example to illustrate how the subscripts on function symbols
guide the application of these rules. To save time, I make use of the standard
elimination rule for ‘&’; also, some occurrences of ‘f;()’ are omitted as trivial,
although a few are included since they clarify how (R1) is applied. Apart from
these omissions, the example is in conformity with the algorithm given later.
(To reduce clutter, I omit most underlines, but take heed that numerals appear
as such in the proof.) Where "¢ is the string coded by c:

Axiom for f]

fc(x7 0) = fq(x) & fc(xvyl) = fd(fc(x7y)7'r7y)
o VS), 1: /0", y/0']

f0(0,70) = () & fC(O, 0”) = fd(fC(OIVO,)ﬂolrol)

fe(0',0") = fa(fe(0',07),0", 0’) &E), 2]
Fe(0',0") = fa(fa(fe(0',0),0',0),0,0) R2), 3: d = 3rd in "¢ Y]
= fa(fa(fq(0"),0', 0) 0,09 R1), 4: ¢ =2nd in "™
Fe(07,0") = fa(fq(0',0',) ’,0") P), 5: q codes 1%1]
fe(0',0") = »(f1(0"),0',0),0",0") C), 6: p, 1 are 2nd, 3rd in "d™ 1
= (

S), 7: subscript is 1]
P), 8; p codes 1%3]

fa(fp(07,0°,0),0",0")
0',0") = £4(0”,0',0")

© ® N e Wy =
T
<
[en]
<
N

[
[(
((
((
[(
[(
[(
[(
[(
[(
[(
[(

10. £(0',0") = fp(£1(0"),0',0") C), 9: p, 1 are 2nd, 3rd in "d™!]
11. f.(0',0") = fp(0"",0',0") S), 10: subscript is 1]
12, fe(0',0"y=0" P), 11: p codes 1x3]

This example elucidates how subscripts on function symbols enable the construc-
tion of the proofs, and in particular, the application of the shortcut rules.

4. An algorithm for canonical proofs

We now present the algorithm for canonical proofs of fi(4, n)=m (when the
formula has a proof at all).

Throughout, the algorithm is often described as operating on linguistic strings
rather than on the codes for these strings. This is for simplicity’s sake, and since
coding and decoding is p.r., it is of no import.

Terminology: The indices for some functions will code a string 0%b*ci* ... *¢, *F,
where the b*®, ¢;*", ..., and ¢,'" axioms define fy(71, ..., 2&), for (1, .., 7%),

,and f.n(z1, ..., o), respectively. Call such an index a “composition index.”
Other indices will code a string “’*a*d, where the a'' and d'" axioms define
falz1, ..., zx) and fy(zq, ..., zxy2), respectively. Call such an index a “recursion
index.” Also, let us jointly refer to composition indices and recursion indices as

“complex indices.” The other indices we shall call “simple indices.”

Suppose now that e(i) enumerates the axiom for flg Then, s(i,n) is the code of
the sequence that is determined as follows:

Step 1. [Basic Binary Projections] If ¢ does not code *2, where j equals 1 or 2,
then go to Step 2. Otherwise:

A. If j=1, output the following sequence and then halt:

L. fi(z, y)=2 [Axiom for fi]
2. fild, n)=i [(VS), 1: /i, y/n]

B. If j=2, output the following sequence and then halt:

L. fi(z, y)=y [Axiom for fi]
2. fi(4, n)=n [(VS), 1t /4, y/n]

Step 2. [Getting the Baseline Term for P.R. Recursions| If ¢ is not a recursion
index, then go to Step 3. Otherwise:

A. If n=0, start the sequence as follows and then go to Step 4:

L. fz(% O) fg() & fl(@ y) i(fj Z, y)v Z, y) [AXiOHl for fz]
2. fi(i, 0)=fu(d) & fi(&,)=fa(fi(i, n), i, n) [(VS), 1: z/i, y/n]
3. i@, 0)=fa(d) [(&E), 2]

B. If n # 0, start the sequence as follows and then go to Step 4:
, 0

i(z, y), =, y) [Axiom for fi]

L fi(z, 0)=fo(z) & fi(x, y')=fa(fi i
2. f(} O)Zfa(,z & f}(,za n'll):fi(i ," TL;]. ’ ,iv L) [(VS), 1: :L’/}, y/L_]']

Step 3. [Getting the Baseline Term for Other Functions] Start the sequence as
follows and then go to Step 4:

L. fi(z, y)=di(z, y) [Axiom for fi]
2. fi(i, n)=¢i(i, n) [(VS), 1: /i, y/n]

Step 4. [Entering the Main Loop.] The latest line of the sequence is an equality;
call the right-hand term the “baseline term” for the sequence. Check whether
‘f” occurs in the baseline term. (This check is bounded by the total number of
symbols in the wff®). If there are no occurrences of ‘f’, halt. Otherwise, (re)start
the Main Loop: For the present iteration of the Loop, let ¢ be the equation on
the latest line. To the right of ‘=’, find the nn-term embedded in the most
parentheses (a.k.a., the “innermost” nn-term). When there is a tie, choose the
rightmost one. Let 7 be the rightmost, innermost nn-term (to the right of ‘=)
for the current iteration of the Loop. (N.B., 7 will be loaded with numerals
only; we prove this later.) Go to Step 5.

Step 5. [Computing 7] Check the index ¢ for 7. It is either 0, 1, or codes j*k,
where 1 <j<k< c—alternatively, it is a composition or recursion index.

A. If ¢=0, apply (Z): Add a line where 7 is replaced in ¢ with 0. Go back to
Step 4.

B. If ¢=1, then 7 is loaded with some m. Apply (S): Add a line where 7 is
replaced in e with m’. Go back to Step 4.

C. If ¢ codes *k where 1 <j<k<¢, then apply (P): Add a line where 7 is
replaced in e with the numeral in the 5" position of 7. Go back to Step 4.

D. If ¢ is a composition index, then apply (C): Add a line where 7 is replaced

in € with fy(fer(n1, ..., &), .-, fa(na, ..., mg)), where ny, ..., ny are the
same as in 7, and b is the 24 member of the string coded by c, [SRE 3rd
member of the coded string coded by ¢, ..., and ¢; is 142" member of the

string coded by ¢. Go back to Step 4.
E. If ¢ is a recursion index, then:

i. If 7 is loaded with nq, ..., ng, 0, then apply (R1): Add a line where
7 is replaced in € with fy(ny, ..., n), where a is the 24 member of
the string coded by c¢. Go back to Step 4.

ii. If 7 is loaded with nq, ..., ng, m#0, then apply (R2): Add a line
where 7 is replaced in € with fy(fe(n1, ..., ng, m-1), na, ..., ng, m-1),
where ¢ is the same as in 7 and d is the 3" member of the string
coded by ¢. Go back to Step 4.

9Cf. Godel’s function I(x); #7 in his list of p.r. functions and relations, p. 182.

Again, the algorithm generates a proof where f;(i, n) is computed for any n,
provided that the i* axiom for the function symbols defines a binary symbol.
The next section proves this, and in the section after that, an argument is given
for why the algorithm is p.r.

5. Proof that the algorithm is correct
In precise terms, the claim to be proved is:

Theorem: If e(i) codes the axiom defining fig, then given ¢ and any
n, there is an m such that the algorithm generates a unique proof of
fi(4, n)=m, at which point the algorithm halts.

Note that here and elsewhere in this section, our statements employ unbounded
quantification; however, this alone does not undermine that the algorithm is p.r.
Theorem is a claim about the algorithm, not part of the algorithm itself.

Establishing Theorem is best approached by considering p.r. terms with simple
indices first, and then considering separately those with complex indices.

Simple Indices: Vacuously, Theorem holds if the index i=0; after all, the 0"
function symbol is not binary, and a binary function-symbol with subscript ‘0’
has no axiom in the system. Similar remarks apply with every other simple
index, except an index that codes 1* 2 or 2* 2. But in those cases, the relevant
function is a basic binary projection, and the algorithm clearly handles these
under Step 1 in a way that satisfies Theorem.

Complex Indices: We want to show that Theorem holds when ¢ is a complex
index. This part of the proof will require three lemmas. The first is as follows:

Lemma 1: If ff has a complex index, then for any n, the algorithm
starts with a proof of fi(i, n)=p, where 3 is a baseline term and has
no free variables.

Proof: If 7 is complex, there are three kinds of case to consider. The first two
are where 7 is a recursion index and where n=0 and n # 0, respectively. The
third is where 7 is a composition index. In the first case, the algorithm starts:

film, 0)=fa(

1. fa(z) & fi(z, y)=fo(fi(z, y), 7, y) [Axiom for fi]
2. f(}v O):fg@) ft(/):fﬁ(() }’ ﬁ) [(VS), L: I/Z, y/ﬂ
3. fi(d, 0)=fa(9) [(&E), 2]

The rules used are obviously sound; also, f,(7) has no free variables and is by
definition a baseline term. So the third line verifies Lemma 1 in this first case.
In the second case, the algorithm begins:

L. fi(z, 0)=fu(z) & fi(z, y')=fo(fi(z, v), 2, y) [Axiom for fi]
2. fz(}v O):fi(l' & f}(lﬁ n'l/):fﬁ(é & n'1)7 & n'l) [(VS)’ L: I/E, y/@
3. z(,lv n- /):f (Jg(}v n'l)’ & n'l) [(&E)’ 2]

10

The same rules are used as before, and again, fy(fi(é, n-1), 4, n-1) has no free
variables and is by definition a baseline term. So the third line verifies Lemma 1
in the second case. In the third case, the algorithm starts as follows:

1. @(x, y)=oi(z, y) [Axiom for fl]
2. fi(d,)=o:(i, n) [(VS), 12 2/i, y/n]

The rule is sound; ¢;(4, n) has no free variables and is by definition a baseline
term. So the second line verifies Lemma 1 in the third case, which completes
the proof of Lemma 1.

Remark: Like the previous two cases, the baseline term in the third case will have
at least one occurrence of ‘f’. After all, f; in the third case expresses a composed
p.r. function, and the axiom for f; therefore will contain at least one ‘f’ on the
right-hand side (and the baseline term is an instantiation of the right-hand side).

The second lemma required is the following:

Lemma 2: [Soundness| If the algorithm applies (Z), (S), (P), (C),
(R1), or (R2) to a line in order to produce a new line of a sequence,
then in the standard model, if the former line is true, so is the latter.

We prove this by considering the use of each of the rules.

Preliminary: The algorithm is designed to apply the shortcut rules only to the
rightmost, innermost nn-term 7 on a line. So, 7 will be loaded with numerals
only. For if 7 were loaded with a nn-term, it would not be the innermost. (Also,
we also know from Lemma 1 that a baseline term has no free variables, and none
of the inference rules introduce free variables into the picture.)

Applying (Z): Suppose the algorithm applies (Z) so to produce f;(i, n)=¢(72)
from f;(i, n)=¢(71). Then, per the instructions on Step 5A, 71 must be of the
form fo(m), for some numeral m. Also, per those instructions, 7o must be 0.
Since fo expresses the constantly-zero function, Lemma 2 is verified in the case
of (Z).

Applying (S): Suppose the algorithm applies (S) so to produce f;(é, n)=¢(72)
from f;(i, n)=¢(71). Then, per the instructions on Step 5B, 7; must be of the
form fi(m), for some m. Also, per those instructions, 7o must be m/. Thus,
since f1 expresses the successor function, Lemma 2 is verified in the case of (S).

Applying (P): Suppose the algorithm applies (P) so to produce f;(i, n)=¢(72)
from f;(i, n)=¢(71) Then, per the instructions on Step 5C, 71 must be of the form
fo(n1, ..., ng), where ¢ codes 7k and 1<j<k<c. Also, per those instructions,
T2 must be n;. Thus, since f. expresses the k-ary j*h-projection function, Lemma
2 is verified in the case of (P).

Applying (C): Suppose the algorithm applies (C) so to produce fi(i, n)=¢(72)
from f;(4, n)=¢(71). Then, per the instructions on Step 5D, 71 must be of the
form f.(ni, ..., ng), where ¢ codes 0%b*c;,*. .. *¢/*k. Also, per those instructions,

11

T must be fy(fer(na, .-, M)y oo, fa(na, .., ng)). Observe that, given how the
indices for composed functions are assigned, f. expresses a function where the
l-ary function expressed by f; is composed with the k-ary functions expressed by
fe1, -, and f.. The consequence is that f.(ni, ..., ng) is co-referential with
Jolfer(na, oo ma), ooy fa(na, - .., mg)). Thus, the transition from fi(4, n)=¢(71)
to f;(4, n)=¢(72) is sound, and Lemma 2 is verified in the case of (C).

Applying (R1): Suppose the algorithm applies (R1) so to produce fi(i, n)=¢(72)
from f;(i, n)=¢(71). Then, per the instructions on Step 5Ei, 74 must be of the
form f.(n1, ..., ng 0) where ¢ codes “’*a*d*k. Also, per those instructions,
7o must be f,(ny, ..., ng). Observe that, given how the indices for composed
functions are assigned, f. expresses a function which is recursively defined by f,
and f;. The consequence is that fe(na, ..., ng, 0) co-refers with f,(nq, ..., ﬂj
So the transition from f;(3, n)=¢(71) to f;(i, n)=@(72) is sound, and Lemma 2 is
verified in the case of (R1). -

Applying (R2): Suppose the algorithm applies (R2) so to produce f;(i, n)=¢(72)
from f;(4, n)=¢(71). Then, per the instructions on Step 5Eii, 71 must be of
the form f.(ny, ..., ng, m) for m>0, where ¢ codes ’*a*d*k. Also, per those
instructions, 7o must be fi(f.(n1, ..., ng, m-1), n1, ..., ng, m-1). Observe
that, given how the indices for composed functions are assigned, f. expresses
a function which is recursively defined by f, and f;. The consequence is that

fe(na, ..., ng, m) co-refers with fy(fo(na, ..., ng, m-1), n1, ..., ng, m-1). So

the transition from f;(4, n)=¢(71) to f;(i, n)=¢(72) is sound, and Lemma 2 is
verified in the case of (R2). This completes the proof of Lemma 2.

The third lemma is now stated as follows:

Lemma 3: If 7 is a complex index, then for any n, if the algorithm
derives f;(4, n)=/3, where 3 is a baseline term, it will continue until
it derives f;(4, n)=m, for some m, after which the algorithm halts.

Proof: Given any complex ¢ and n, assume the algorithm derives f;(¢, n)=p,
where 3 is a baseline term. As we saw, a baseline term has at least one occurrence
of ‘f’—so at this point, the algorithm will iterate the Main Loop at least once.
Now the Main Loop is defined in such a way that, on a given iteration, it looks at
the equation € (on the latest line) and to the right of ‘=’; it finds the rightmost,
innermost nn-term 7, if any. If it does not find such a 7, then the right-hand term
of the equation is a numeral and the algorithm halts—in which case, Lemma 3
is verified. Otherwise, if finds such a 7, it adds a line, whereby 7 is replaced in €
with a term that is a p.r. reduction of 7. The algorithm then checks whether
there are zero occurrences of ‘f’. If so, then the algorithm halts and we know
that the term right of ‘=" on the latest line is a numeral. In which case, Lemma
3 is verified. Otherwise, The Main Loop will be restarted to further reduce the
right-hand term on the latest line.

So in brief, when the algorithm locates a rightmost, innermost nn-term (to the
right of ‘=7), it adds a line where that term is removed and replaced with a
p.r. reduction of the term. The replacement may not be a numeral, but no

12

matter: The algorithm will continue iterating and the replacements are made
in a determinate order, until a line is reached where the right-hand term is a
numeral. And there will be such a line, given that each p.r. term is ultimately
reducible to a numeral in finitely many steps, as per the definitional rules for
p.r. functions. So the algorithm will produce a derivation from f;(i, n)=g to
fi(4, n)=m, for some m, by iterating the Main Loop a sufficient number of times,
after which it will stop—which is what Lemma 3 says.

From Lemma 1, Lemma 2, and Lemma 3, we know that if ¢ is a complex index,
the algorithm yields a unique proof of fi(i, n)=m, for some m. So Theorem
holds in the case of complex indices, which completes the proof of Theorem.

6. Why the algorithm is p.r.

We have just shown that the algorithm behaves as advertised, and in this section,
we present the argument that the algorithm is p.r.

A key concern should be cleared away first. It will be objected that, since we have
no explicit bound on the number of iterations of the Main Loop, the algorithm
cannot be p.r. But the premise is correct only if the algorithm requires such a
number to count down the iterations when reducing a term. Yet that is not how
our algorithm works. It instead performs a simple check before each iteration to
verify whether a numeral has been reached. If a numeral appears on the right
of the latest line of the proof, then the algorithm halts; otherwise, it restarts
the Loop. As Lemma 3 assures us, this alone makes the algorithm halt exaclty
when it should. And so, the algorithm is able to function without knowing how
many iterations are necessary to reduce a given p.r. term. A bound for such a
number is accordingly unneeded.

It remains to be shown, however, that all steps which are part of the algorithm
are finitely bounded. We show this by going through each of the steps, verifying
how no unbounded searches are undertaken.

However, it is obvious that steps 1-3 are finitely bounded; we need only confirm
this for steps 4 and 5 (a.k.a.“the Main Loop”). In the case of step 4, consider
that the algorithm first applies Gédel’s “length” operation (cf. note 8 above) to
determine the number w of symbols in the latest line of the proof. This number w
is set as a bound to check whether zero ‘f’s occur to the right of ‘=" in the latest
line, thus making the check p.r. If no ‘f’s occur, the algorithm halts. Otherwise,
the algorithm can find the rightmost, innermost nn-term in the latest line of
the proof by scanning the term’s parentheses structure in a single left-to-right
pass to determine nesting depth. This is a bounded operation on a finite string
and thus is primitive recursive. If more detail is required, consider that the
algorithm counts the parenthesis-pairs—mnot greater than w—which enclose each
‘f” to the right of ‘=" (of which there are also less than w). An occurrence of ‘f’
that yields the greatest count begins an innermost nn-term.'® If there is more

10Note that codes for terms in PRA- can be identified by Gédel’s “first-order term” operation;
7#18 in Godel’s list of p.r. functions and relations.

13

than one such ‘f’, the rightmost one is the last one in the wif. (If the innermost
terms in the wff are enumerated left-to-right, it will be the one enumerated by
the greatest number, not greater than w.) Again, the relevant maneuvers are
p.r.; they amount to bounded arithmetic operations on finite sequences.!!

As for step 5, the algorithm adds a new line to the proof, which is identical to the
previous line, except that the rightmost, innermost nn-term 7 has been replaced.
Importantly, replacement is p.r.; cf. Gédel’s Sb operation, #31 in his list. In
more detail, the algorithm first identifies the index for 7 as 0, 1, or as coding a
specific sort of string. (If the last, the first element of the string indicates if the
index is for projection function, or if it is a composition or a recursion index.)
From this determination, the algorithm decides on one of the replacements listed
below. (Since there are only finitely many replacement templates, this decision
process may be implemented by a p.r. predicate.)

Per (Z): If 7 is fo(m), replace it with 0.

Per (S): If 7 is f1(m), replace it with m/.

Per (P): If 7 is fo(n1, ..., mx) where ¢ codes 7*k and 1<j<k<c,
replace it with n;.

Per (C): If 7 is fe(n1, ..., m&), and c is a composition index, replace
it with fo(fer (1, -5 M), -, fa(n, -0 M)

Per (R1): If 7 is fe(n1, ..., &, 0), and c is a recursion index, replace
it with fo(ny, ..., m).

Per (R2): If 7 is fe(n1, ..., mk, m'), and c is a recursion index,
replace it with fa(fe(na, ...\ m, m), g, ..., g, M).

In each case, the replacement operation is bounded by the length of the term,
and the output string can be constructed explicitly using only primitive recursive
operations. In more detail, given ¢, the algorithm extracts j, &k, b, c1, ..., ¢,
a, or d, as needed, and such extraction is p.r. And the replacing term for 7 is
constructed in a p.r. manner since this at most requires replacement into finite

term-schemes (which are found in the axiom-schemes for the function symbols).

It is thus verifiable that the procedure never searches indefinitely using unbounded
minimization. The proof procedure is implemented by direct pattern-matching
against a fixed finite set of templates, and the algorithm always operates over
terms of bounded length. In short, while the algorithm computes a function
that would ordinarily be excluded by a diagonal argument on its standard
interpretation, the procedure conforms to the criteria for primitive recursion.

7. Closing

The algorithm presented in this paper is primitive recursive while enabling the
behavior of a universal p.r. function. This challenges the standard view where

MMy thanks to [redacted] for assistance with the argument of this paragraph.

14

diagonalization demonstrates the non-existence of such a function. Other diagonal
arguments are known to demonstrate erroneous background assumptions rather
than the impossibility of a diagonal object (Simmons, op. cit.), and the present
construction indicates that diagonalization in the present case is of this sort. Still,
this leaves open why the diagonal argument does not foreclose the possibility of a
universal p.r. function. Clarifying this could provide deeper insight into primitive
recursive definitions or diagonalization within formal arithmetic. Either way,
the case suggests that further analysis may refine our understanding of what
diagonal arguments presuppose about the structure of definability or primitive
recursion. '

Works Cited

Curry, H. (1941). ‘A Formalization of Recursive Arithmetic,” American Journal
of Mathematics 63: 263-282.

Cutland, N. (1980) Computability: An Introduction to Recursive Function Theory.
Cambridge: Cambridge University Press.

Godel, K. (1931). ‘Uber Formal Unentscheidbare Sétze der Principia Mathemat-
ica und Verwandter Systeme 1,” Monatshefte fiir Mathematik Physik 38: 173-198.
Pagination is from Godel, K. (1986). Collected Works I. Publications 1929-1936.
S. Feferman et al. (eds.), Oxford: Oxford University Press, pp. 144-195.

Hilbert, D. & Bernays, P. (1934). Grundlagen der Mathematik, Vol. I, Berlin:
Springer.

Kleene, S.C. (1952). Introduction to Metamathematics. Amsterdam: North
Holland Publishing Co.

Nelson, E. (2011). Elements. https://arxiv.org/abs/1510.00369

Nelson, E. (2011a). ‘Re: The Inconsistency of Arithmetic.! The n-Category Café.
https://golem.ph.utexas.edu/category/2011/09/the_inconsistency of arithm
eti.html#c039590.

Quine, W. (1951). Mathematical Logic, revised edition. Cambridge, MA: Harvard
University Press.

Robinson, R.M. (1950). ‘An Essentially Undecidable Axiom System,” Proceedings
of the International Congress of Mathematics: 729-730.

Simmons, K. (1993). Universality and the Liar. Cambridge: Cambridge Univer-
sity Press.

Skolem, T. (1923). ‘Begriindung Der Elementaren Arithmetik Durch Die
Rekurrierende Denkweise Ohne Anwendung Scheinbarer Veranderlichen Mit

12My thanks to Bill Gasarch, Bill Mitchell, Panu Raatikainen, Lionel Shapiro, Henry
Towsner, Nic Tideman, Bruno Whittle, Noson Yanofsky, and Richard Zach for discussion of
issues relevant to this paper. I also express gratitude to an audience at the 2022 meeting of
the Australasian Association of Philosophy.

15

https://arxiv.org/abs/1510.00369
https://golem.ph.utexas.edu/category/2011/09/the_inconsistency_of_arithmeti.html#c039590
https://golem.ph.utexas.edu/category/2011/09/the_inconsistency_of_arithmeti.html#c039590

Unendlichem Ausdehnungsbereich’, Videnskapsselskapets Skrifter, I. Matematisk-
Naturvidenskabelig Klasse, 6: 1-38. Translated by S. Bauer-Mengelberg as ‘The
Foundations of Elementary Arithmetic Established by the Recursive Mode of
Thought, without the Use of Apparent Variables Ranging over Infinite Domains.’
In Heijenoort, J. van (ed.). (1967), From Frege to Gédel: A Source Book in
Mathematical Logic, 1879-1931. Cambridge, MA: Harvard University Press, pp.
302-333.

Tao, T. (2011) ‘Re: The Inconsistency of Arithmetic.! The n-Category Café.
https://golem.ph.utexas.edu/category/2011/09/the_inconsistency of arithm
eti.html#c039553.

16

https://golem.ph.utexas.edu/category/2011/09/the_inconsistency_of_arithmeti.html#c039553
https://golem.ph.utexas.edu/category/2011/09/the_inconsistency_of_arithmeti.html#c039553

	An Anomaly in Diagonalization

